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ABSTRACT

Problems of information processing and optimal surveillance in a false target
environment are investigated with ASW applications in view. The information
processing procedures, among other things, make use of adaptive estimation
tuchniques in order to identify uncertain system parameters. Procedures are
presented for computing real-time estimates of the target location probability
distilbution in realistic tactical scenarios involving moving targets and false sensor

responses. The procedures are applied to a variety of illustrative examplee per-
taining to the processing of responses obtained from a fixed sensor field in barrier
and area surveillance scenarios.

The optimal allocation of ASW search resources in a false target environment
is investigated in an exploratory analysis of an idealized surveillance 'situation.
Several allocation policies are formulated including one based upon some concepts
of i•nformation theory. This "maximum information gain" policy is shown by
numerical examples to have very desirable characteristics. In order to further
establish the relevance of the tnformation-theoretic approach to the surveillance
problem, the latter is formulated as a type of sequential statistical experimental
design problem which has been studied extensively using information-theoretic
concepts.
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LI This is a report to Nava& 'Analysis. Progranm, Office of Naval Research
(Code 431), undor V ontrtot No. N00014-71-C-0309. It presents methods of

.1 processing fniormation from ASW sensors in the presence of false targets and
i for planing surveillance actions bAsed on such processing. The methods are

presented in ways that are suitable for real-time computer assistance to ASW
surveillAnde operations and have in fact been motivated by actual applications of

. this nature. Related prior applications have also included computerized assistance
to search and rescue operations by the Coast GUurd.
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We further acknowledge the contributions of our oolleagpes Dr. Thomas L. Corwin,
who was responsible for Appendix B, and Mr. Brian D. Wenocur, who performed
considerable programming and computation support.
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i(1 SUMMARY

This report addresses problems pertaining to ASW information processing

and optimal surveillance in a false target environment. The objective is to
provide useful concepts and practical approaches for answering the question,
"Where it the target ?". Potential applications include continuous broad
localization of the target through intermittent application of ASW search atii selected times and places. No ASW action other than target location is considered.

The results on ASW information processing are given in Chapter II, and the
results on optimal surveillance are given in Chapter I1I. Chapter I provides a
brief introduction, and Appendices A and B support the material presented in
Chapters II and III.

The first two sections of this summary discuss Chapters II and IMl. The
third section discusses the appendices.

ASW Information Processing

Chapter II presents methods for processing ASW information in order to
I compute real-time estimates of the target location probability distribution. An

illustrative ASW setting is used to demonstrate the potential applications of the
processing concepts, and extensive numerical results are given. The method-
ology is discussed in computer programming oriented language in the final
section of Chapter II and in greater generality in Appendix A.

w The target location probability distributions are computed by monte-carlo
I simulation and are expressed discretely in terms of grid cell probabilities. It

is assumed for illustrative purposes in Chapter II that a fixed sensor field
provides the source of real-time input to the processing system.

The term sensor response is used to indicate that a decision has been made
that the sensor output contains a sufficient number of target-related cues so that
the hypothesis that the target is present is preferred to the alternative hypothesis
that the target is not present. A false response Is a response generated by a
non-target-related mechanism. The causes of false responses are dealt with
from a decision-theoretic point of view in a predecessor report (reference (a ]);

-A" " "• -- -...-- ;'



the present report adopts an operational point of view and focuses on overcoming
the adverse effects of false targets.

The methods of Chapter II and Appendix A have been applied without false
target considerations in Coast Guard search and rescue (BAR) cases (see
reference [ b 1) and in certain ABW situations. In each instance, successful
implementation of the methods has depended upon exploitation of the unique
aspects of each application and construction of a mathematical model having a
level of detail and realism consistent with the quality of the data and with the
constraints imposed by computer memory size and computation speed. In view
of this, the results in this report are intended to point the way rather than to
give a comprehensive treatment which would cover all possible circumstances. 1

Among other things, Chapter II shows how to make use of adaptive estimation
techniques (see reference [c ]) in order to identify uncertain system parameters.
In a sense, one begins with a family of models and the "correct" model is
identified adaptively on the basis of observational information.

For example, the particular stochastic process underlying target motion is
not assumed to be known. Rather, several possible processes ("scenarios") are
postulated and each one is given an a priori probability ("credence"). The
processing system revises the credences in accordance with the input sensor
responses. Those scenarios which are most in agreement with the sensor
responses eventually develop the highest credences.

Similarly, the single-sensor, single-glimpse probabilities of detection and
false alarm are treated as unknown parameters. They are, however, related .

through a known ROC relationship. The probability of detection is initially
assumed to be a random variable with a uniform distribution between known limits
and the processing system adaptively revises this distribution in accordance with
the sensor responses.

Table S-1 indicates illustrative results of the adaptive estimation procedures.
In all cases, the scenarios for target motion are considered a priori to be equally
likely. The true detection probability PD = .8 is not known; it is assumed that
PD is a particular value of a random variable P•D which is uniformly distributed
In the interval from .5 to .9. The expected value of this prior probability
distribution is .7. ThaO estimated detection probabilities given in Table S-1
after incorporating sensor field responses are the expected values of the
posterior distributions for 13D. The processing algorithms make use of the
entire distribution for PD, however, and not just the expected value.

Table S-1(a) pertains to a target patrolling station and is based on the results
shown in Table 1i-1 of Chapter II. The correct scenario for target motion in this
example is Scenario 2, and Table S-1(a) shows that the credence associated with
this scenario rises to .95 as a result of processing all the sensor response
informatiou for four field glimpses. The estimated detection probability is . 77,
compared to the actual value of .8.

vi



TABLE S-1

[- SUMMARY OF ADAPTIVE ESTIMATION RESULTS

Notes: (1) This table indicates illustrative results of adaptive
U estimation of target scenario and detection probability.

(2) The correct target scenario is circled, and in all
cases the true single-sensor, single-glimpse
detection probability is PD = "8.

(a) Target Patrolling Station (see Table II-1)

Estimated Single-Sensor,S• Single-GLImpse Detection

[I Probability
Scenario Credences (true value is A8)

No Sensor Information Used .33 .33 .34 .70

S All Sensor Information Used .00 .95 .05 .77
(96 hours into mission--4 field glimpses)I

(b) Target in Transit (see Table H1-2)'I Estimated Single-Sensor,
Single-Glimpse Detection

Probability
Scenario Credences (true value is , 8)

3® 4 5
i No Sensor Information Used .2 .2 .2 .2 .2 .70

All Sensor Information Used .75 .1.8 .01 .03 .03 .73
I (48 hours into mission--3 field glimpses)

All Sensor Information Used .33 .60 .00 .02 .05 .78
i (96 hours into mission--4 field glimpses)

(c) Target Out of Grid Area (see Table 11-3)

Estimated Single-Sensor
Single-Glimpse Detection

Probability
SmScenario Credences (true value is .8)

S1 2 3 4 @m

I No Sensor Information Used .2 .2 .2 .2 .2 .70

AU Sensor information Used .02 .06 .07 .08 .77 .83
i (96 hours into mission--5 field glimpses)

vii
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Table S-1(b) pertains to a target in transit and is based on the results shown
in Table 111-2. In this illustration, the target is assumed to be a late Scenario 1
or an early Scenario 2. That is, the true target's position falls midway between *1

the mean positions prescribed by Scenarios 1 and 2. Table S-1(b) shows that as
a result of processing five field glimpses, the total credence associated with the
"two closest scenarios is .93 and the estimated detection probability is .78.

Table S-l(c) pertains to a target which is out of the grid area, that is, during
the period of observation considered there has been no transit by the target through
the area of interest. The true scenario in this illustration is Scenario 5 and as a
result of processing five field glimpses, the credence associated with this scenario
rises to .77. The estimated detection probability is .83. . I

Figure S-1 shows selected probability distributions for the cases considered
in Table S-1(a) and S-1(b). It should be noted that only probability which falls
within the grid is shown and thus the numbers need not add to one, The
probability distributions on the left are based upon the a priori scenario and make
use of no sensor information. The probability distributions on the right are
based upon use of all sensor information available.

It is evident from Figure S-1 that processing of sensor response information
by the methods described in Chapter 11 and Appendix A results in considerable
concentration of the target location probability distribution.

,Ootimal Surveillance

Chapter IIl is addressed to optimal surveillance in a false target environment.
An exploratory analysis is presented for the purpose of gauging the effectiveness
of a surveillance policy based upon maximization of the expected information gain
in the target location probability distribution. Here, the term information is used
in the technical sense of communications theory (see, for example, reference [ d 1).

The concepts presented in this chapter are expressed in terms of rather
idealized assumptions and further development is required before application can
be made to large-scale practical problems. The objective of this chapter is to
demonstrate through examples that the concepts of information theory are relevant
to certain kinds of search and surveillance problems, particularly when false
targets are considered.

It is assumed that the performance of an ASW search system is idealized in
terms of a J x J response array (J is the number of search cells),

viii



FIGURE S-1

THE INFLUENCE- oF SENSOR RESPONSES
ON THE TARGET LOCATION PROBABILITY DISTRIBUTION

Ii Note: Only probability inside grid Is shown and thus numbers need not add to one.

(a) Target Patrolling Station (See Figures 11-5 and 11-6)

No Sensor Information Used All Sensor Information Used

(96 hours into mission--0 field glimpses) (96 hours into mission--4 field glimpses)

1 2 3 4 5 6 1 2 3 4 5 6

A A

IB B .02 .05 .02

C .01 .13 .15 .05 .04 eTargt C .01 ,Targe

D .04 .09 .18 .408 .01 D .49 .48

E .01 .01 .05 .03 E

F F

(b) Target In Transit (See Figures 11-9 and 11-10)

No Sensor Information Used All Sensor Information Used
(48 hours into mission--0 field glimpses) (48 hours into wission--3 field glimpses)

1 2 3 4 5 6 1 2 3 4 5 6

I A .02 .05 .03 .02 A .01
i-l - - .- - -......

B .01 .03 .02 ,Targ4t B

I c .02 .06 /04 .02 C .01 Ts rget

I D .01 .? .03 .01 D .6 .36

I E .02 .03 .07 .02 E .12
- - - n•1 -m -In -

F .02 F .02 .03

i ix
.- - - - - - -.-..-.-
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where R(i, J) is the probability that an increment of search effort applied to the
jth cell will result in a response given that the target is located in the ith cell,
The desired modification of the target location probability distribution is
accomplished by the sequential application of search in selected cells. The
surveillance is carried out in stages, and at the end of each stage one is required
to estimate which cell contains the target. For all policies examined, the
selection rule at the end of a stage is to pick the cell having the highest target
location probability distribution based upon evaluation of the search results.
The cell searched during a stage, however, may or may not be the highest
probability cell depending upon the policy.

The measures of effectiveness are the probabilities S(k) of correctly selecting
the cell containing the target at the end of the kth stage for k m- 1, 2, ..... A
surveillance policy which maximizes S(k) for some particular k is referred to as
a k-optimal surveillance policy and a surveillance policy which maximizes S(k)
for all k > 1 is referred to as a uniformly optimal surveillance policy. Within
the framework of our analysis, k-optimal policies are guaranteed to exist since
the set of all possible policies is finite; however, existe ice of uniformly optimal.
surveillance policies is not guaranteed.

When target motion is considered, it is assumed for illustration to be Markovian.
This is not essential, however, and target motion could equally as well be described
by the non-Markovian processes considered in Chapter II and Appendix A. The
J X J transition matrix D for the Markov process is assumed for illustration to be
given by, for some 0 < 6 < 1,

J , J .. .,9

6 ___

D

./

This transition matrix depends upon a single parameter 6, here referred to as the
dispersion constant. The initial distribution for the process is denoted d.

The problem of finding an optimal surveillance policy can be formulated in
terms of a stochastic control problem, and this is discussed briefly in Chapter III.

x



lI
LI Visualizing the problem in this way, it seems apparent that k-optimal plans may

be found by dynamic programming, but we do not develop these solutions in this
report. Our interest is in the entire time behavior of the success function s
rather than the value of the function at some fixed stage.

Four surveillance policies are examined in Chapter HI using a variety of
assumptions about the false target environment and about the prior target
location probability distribution and target motion charagteristies. To do this,

i j ilet (for a given stage) PB(J) be thr before-search probability that the target is
* located in the jth cell for 1 < j :S J. Let pA(r,i, j) be the conditional after-search

probability that the target is located in the jth cell given that the jth cell was
searched and result r was obtained. Here, r = 1 indicates a target-like response
and r = 0 indicates a non-target-like response. The four policies examined are
as follows:

- I. The optimal single-stage look-ahead policy The optimal
single-stage look-ahead policy is to search in the cell which, based
upon the estimated vector PB, maximizes the probability of correctly
selecting the target cell at the end of a singk, stage. This is a gener-
alization of the optimal whereabouts plan formulated in reference [e a
for searches without false responses. If

BO) = max{PB(i) ROt,J) : 1< I IS J} + max{PB(i) [1 -R(i,J) : 1 S I < J),

then it is shown la Chapter III that the optimal single-stage look-ahead
poliny is to search In cell J* for which

B(j*) _ B(J) for 1_< JJ.

1., The maximum information-gain policy. The maximum infor-

mation-gain policy is to search in the cell which maximizes the expected
information content (or, equivalently, minimizes the expected entropy)
of the posterior after-search target location probability distribution.

For any discrete probability distribution P over J cells, the
entropy H(P) is defined by

LJ

H(P) . 2 Pj) In P(j).
jI

S~xl
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.1
The expected entropy U(J) of the posterior target location probability
distribution given search in cell j is shown In Chapter III to be given
by

Ut) = - 2 PB(i) {R(i, J) in PA(l, I, J) + (1 - R(i, J)) In PA(0 , i, J)}
i=1

The maximum information-gain policy is to search in any cell J*
for which

UlJ*) < U(J) for I < j<J.

II. The highest vrobability cell policy. The highest probability
cell policy is to search in the cell with the highest probability, that is,
to search in any cell J* for which

PB(J*) Ž PB(J) fori <_J J.

Once PB is determined from the search results of the previous stage,
this plan does not make further use of the response matrix R.

MV. The uniform surveillance policy. The uniform surveillance
policy is to search systematically through all search cells in a fixed
rotation, that is, one searches the J cells in order and then repeats
as often as required. This plan does not make use of the target
location probability distribution nor of the response matrix.

Figure S-2 illustrates the behavicr of the above-mentioned surveillance
policies in one of the cases (Case I(a)) considered in Chapter 111. The target is
assumed to be stationary with a uniform prior distribution, I. e., d(1) = .33,
d(2) =-. 33, and d(3) =.34. For all cells, if the target is in the cell searched,
then the probability of response is . 8. The probability of false response is .7
in the first cell and the probability of false response is . 1 in the second and third
cells. This means that very little information is gained by a search in the first
cell since the probabilities of correct response and false response are nearly
equal.

xii
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Figure S-2 indicates that in the earlier stages of search, there is little
difference between the maximum information-gain policy and the optimal single-
stage look-ahead policy, Asymptotically (i.e., for large k), the maximum infor-
mation-gain policy appears to have a slight advantage. The uniform surveillance
policy (Policy IV) also does well in this example, but the highest probability cell
policy (Policy II) is not particularly attractive.

Figure S-3 shows the influence of target motion on probability of success for
the maximum information-pin policy. In this case (Case 1(b)), the response
matrix R is the same as in Figure 8-2, but the prior distribution Is non-uniform
with d(1) - .75, d(2) = . 15, and d(3) - .10. The three examples shown correspond
to values of the dispersion constant, 6 = 0, 5 =.3, and 6 = 1. The case where
6 - 0 corresponds to no target motion, and, consequently, this curve is the same
"as that given in Figure S-2 for this policy. The case where 6 - 1 corresponds
to complete dispersion of the target location prohability distribution to a uniform
distribution at each stage. The first transition of the Markov process Is made
at the end of the first stage. Therefore, S(1) is identical for all three values of
the dispersion constant. When 0 < 6 < 1, the curves do not appear to approach 1
asymptotically. In these cases, it appears that equilibrium is reached for large
values of k in the sense that the information pined by search is balanced by the
information Loot by dispersive target motion.

The principal conclusion of Chapter III is that the maximum information-pin
policy appears to have very desirable characteristics in the idealized surveillance
scenario considered. In all cases considered, it is the best or nearly the best
of all the plans considered, Moreover, for each alternative policy, there is at
least one case given where the maximum information-gain policy is
much better. This conclusion appears to be at variance with some previous
investigations into the value of information theory in search problems; these
other investigations are reviewed briefly in the final section of Chapter 111.

Appendices

Appendix A provides a generalized treatment of the information processing
concepts described and applied in Chapter It. Knowledge of the mathenmatical
structure of these information processing procedures makes it possible to carry
out deeper investigations of their characteristics and scope. An understanding of
Appendix A, however, is not required in order to undertake the development of
new processing systems; the last section of Chapter II should suffice for this
purpose.

Appendix B formulates the search and surveillance problem as a statistical
sequential e.perimental design problem. The purpose of this formulation is to
suggest a theoretical framework for applying information theoretic concepts to

xtv
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surMSveofl problems. In particular, the maxlmumn lnformation-gain policy of
CMpter U to shehm to correspond to Undley's approach (me reference [ f )) in
sequential experimental desWLn. It is also shown that the problem of which cell
to mnavch at eacU stap of a surveillance op.ratton may be viewed as a pine
between tbe e•ach plonner and nature In which the payoff to the earch planner
Is measured in te•rm of the information he pins about the true state of nature.
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ASW INFORMATION PROCESSING AND OPTIMAL
SURVEILLANCE IN A FALSE TARGET ENVIRONMENT

CHAPTER I

INTRODUCTION

This report addresses problems pertaining to ASW information processing
and optimal surveillance in a false target environment. The objective Is to
provide useful concepts and practical approaches for answering the question,
"Where is the target ?". Potential applications include central-site processing
of data from fixed surveillance systems, VP mission planning and analysis at
Tactical Support Centers (TSCs), ocean surveillance, and processing of diverse
kinds of ASW-related information by computerized command and control systems
(ASWCCS, WWMCCS, etc.).

In this report, the term sensor is used to denote the entire senstng system
consisting of transponder, processor, display, and human operator. A target-like
sensor response results from a decision based upon the inputs to the sensing system in
favor of the hypothesis that the target is present as opposed to the alternative
hypothesis that the target is not present. A target-like rmoponse may be generated
by the target (a true response) or by some other non-target-related mechanism (a
false response).

A predecessor report (referenoe I a 1) deals extensively with the causes of
false responses and, among other things, provides quantitative models for
including false responses in ASW computer simulations.

The present report assumus that the occurrence of false responses is an
unavoidable operational fact of life and focuses on the problem of what to do about
them.

We are interested in utilizing the information provided by sensor responses
for the purpose of making target location predictions. In parts of an operating
area where there are few false response stimuli, such as those produced by shipping or
bioloIgical activity, a target-like response conveys considerable information about
target presence. In other areas which abound in false response stimuli, a single
target-like response has less meaning and importance.

S-1
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For our purposes, search is defined as the act of acquiring response/no
response data from the sensors. In most treatments of search theory, the
objective of search is target detection, I.e. , achieving a state where the target's
location (e. g., a cell in a search grid) can be stated with absolute certainty.
Unfortunately, this state is seldom reached with non-visual sensors because
of the possible occurrence of false responses. Thus, new approaches are
required to deal realistically with these situations.

In this report, in fact, the detection state is not observable. That is, in this
report it is assumed that the decision maker can never state "We have detected
the target." He can only become increasingly confident that the information provided
by his sensors is consistent with a particular target location or motion hypothesis.

Even within the narrow confines of ASW search and surveillance, there are
a wide variety of tactical situations which might arise and which might involve1
many different types of ASW units, sensors, and systems. In order to treat this
diversity, we have decided to emphasize concepts rather than details. Our
intent is to show the potential usefulness of certain ideas rather than to present * I
detailed algorithms for the Implementation of these ideas in specific situations.

Chapter II discusses methods for centralized processing of diverse kinds of
sensor data and general intelligence. These methods have been applied without
false target considerations in Coast Guard search and rescue (SAR) cases (see
reference [b ]) and in certain ASW situations. The discussion is based upon an
idealized tactical setting where a fixed distributed field of sensors provides the
response data. These responses and subjective a priori information about target
information are input to the processing system- the output of the processing system
provides the answer to the question, "Where is the target?" in the form of target
location probability maps. Illustrations are given for the cases of targets
patrolling on station, targets in transit, and targets out of the area of interest
entirely. In the latter case, all sensor information io false response information.

In Chapter II the subjective input takes the form of scenarios for target motion
together with associated credences. The "weightc!, scenario" idea was introduced
by Dr. John P. Craven during the Mediterranean H-bomb search in 1966 and used
to develop an a priori probability target location distribution for that operation.
The weighted scenario approach was used subsequently in the 1968 search for the
submarine Scorpion (see reference [ g 1) and is presently incorporated in the
operational computer-assisted search and rescue planning (CASP) system of the
Capst Guard.

The methods illustrated In Chapter II also permit the input of probability
distributions rather than single-valued estimates, for parameters whose values
are uncertain; the "true" values of these parameters are estimated from the
sensor observatio.a data concurrent with the determination of the target location
probability distributions. Appendix A supports the material in Chapter [I with a
more general and abstract discussion of the Information processing concepts.

-2-



i. Chapter II is concerned with optimal utilization of the Information given by
the target location probability distributions, and the analysis in this chapter is
intended primarily to demonstrate the potential applications of information theory
to ASW surveiilance in a false target environment. In this kind of eivironment,
sensor responses do not necessarily indicate target presence, but they do provide
a certain amount of information. Our results indicate that this information may
be quantified, analyzed mathematically, and usefully applied in terms of the
concepts of information theory.

The tactical setting considered in Chapter III is an idealized ASW surveillance
sittition in which one is interested in finding the sequential assignment of ASW
search which will maximize the number of times that the target's position is
correctly specified over an extended period of time. Four surveillance policies
(i. e., sequential allocations of search effort) are compared using monte-carlo
simulation. The policy which maximizes the expected information gain in the
posterior target location probability distribution is found to provide the best overall
results in the cases examined.

Previous studies (in particular, references h], [ i , and [ J ]) of the
connections between search theory and information theory have reached negative
conclusions. These previous studies are reviewed in the final section of
Chapter III and some reasons for the apparent disagreement are offered.

Information theoretic approaches have been used extensively in statistics (see,
for example, reference [k ]); Appendix B relates these statistical methods to the
surveillance problem from the point of view of sequential experimental design
and hypothesis testing.

.1
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CHAPTER II

ASW INFORMATION PROCESSING IN A FALSE TARGET ENVIRONMENT

This chapter present, procedures for processing ASW information in a false
target environment for the purpose of predicting target location. The procedures
are computer-oriented and stilted for use in command centers which have access
to diverse kinds of ASW sensor data and intelligence. Questions pertaining to the
utilization of the target location predictions are deferred to Chapter III.

The methods Indicated in this chapter are Bayesian and are addressed primarily
to answering the question, 'Vhere is the target?". The results are displayed in
terms of target location probability maps which are based upon subjective target-
mission scenarios and upon observed sensor response data. The maps express
the target location probability distributions in terms of grid-cell probabilities.
Other useful results such as the probability distributions for target course and
speed could be displayed if desired but are not treated in this report.

Each ASW situation has its own peculiarities, and discussion of the information
processing meth:sl in a way which would cover all contingencies would, it is
believed, obscure the basic principles. Therefore, our main purpose is to
demonstrate the potential usefulness of the concepts in terms of specific examples
and to provide a mathematical framework for further applications.

Successful implementation of the methods will depend to a large measure upon
one's ability tW exploit the specifics of each application (target mission objectives
and patterns of operation, own systems characteristics, crew protioiencv, etc.)
and to construct a mathematical model having a level of detail and realism
consistent with both the data quality and the constraints imposed by computer memory
size and computation speed.

As mentioned above, the information processing methods discussed in this
chapter are Bayesian. Briefly described, one begins by generating a large
collection of "constructs,' el, O.. eN. Each construct specifies a complete target
track as well as any parameters of the mathematical model which are not assumed
to be known exactly. For each construct en, there is specified a prior probability
pn that the nth construct is correct. The prior probabilities reflect the validity
of the constructs before any information is obtained from the various ASW sensors.
Usually, pn = 1/N when the constructs are generated by monte-carlo simulation.

-6-
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F
Sensor information is used to update the prior probabilities for the constructs

in the form of a posterior distribution. This is done as follows. Let

sensor response patterns observed the nth construct
qn -P throughout the time period of interest is correct

If Pn denotes the posterior probability for the nth construct, then according to
Bayes's formula

m1
Zm1qnPn torn :' l,...N.

The frst section illustrates the information processing methods by applying
them to hypothetical ASW situations. The second section presents the details of
tho mathematical procedures used to compute the illustrations. Appendix A
provides a generalization of the information processing methods to more general
situations.

nlustrative ASW Applications

This section illustrates the results of applying certain methods for processing I
subjective target motion scenario information and ASW sensor response data in
order to obtain estimates of the target location probability distribution and of certain
other parameters of interest. The methods themselves are postponed to the second,|
section. The target location probability distribution permits one to determine the
probability that the target is contained within specific geographical regions. These
probability distributions are of central importance in ASW.

In this report, the target location probability distribution is expressed in terms
of grid-cell probabilities as illustrated in Figure 11-1. Charts such as Figure 11-1
are often referred to as target location probability maps. In the case shown, there
is a 20% chance that the target is in cell C-3 and a 70% chance that the target is in
the region covered by cells B-3, C-2, C-3, C-4, and D-3. Target location
probabilities associated with other regions may be obtained by summing the appropriate
probabilities. .1

Although tactical use of the target location probability distribution is not
discussed in this chapter, a comment on contact investigation is in order, The
usual objective of contact investigation is to detect and further localize the target.
To a large extent the target location probability distribution consolidates all of the

-6- .1
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relevant information needed to pursue this objective. The probability map
displays the information pertaining to sensor contacts combined with the equally
important information pertaining to target-mission objectives and patterns of J
target operation. In many cases, therefore, it is better to Investigate areas
associated with updated target location probabilities rather than to investigate
points associated with the individual contacts. The usefulness of the latter
investigation usually decreases rapidly as "time late" increases.

The first subsection below introduces the sensor response assumptions.
The three subsections which follow the first provide the illustrative numerical
examples. These are separately addressed to the cases where the target is
(1) patrolling station, (2) in transit, and (3) out of area.

Sensor assumptions| Figure II-2 shows the sensor field which will be used
in all of the examples given in this section. The sensors are arranged in a
fixed rectangular array with 60-mile spacing between rows and columns.

The term "sensor response" wiU be used to indicate that a decision has been
made that the sensor output contains a sufficient number of target-related cues
so that the hypothesis that the target is present is preferred to the alternative
hypothesis that the target is not present. A decision-theoretic discussion of this
determination is given in detail in Chapter IV of reference [a ], and we will not
be concerned further with these details.

Sensor response decisions might be made by an individual in charge of a
sensor team or, perhaps, by the programming logic of an automatic classification
device. The information processing methodology presented in this chapter may be
particularly useful in the latter case because the programming of an automatic
classification device requires the explicit statement of classification decision
rules. Such explicit rules are much easier to deal with analytically than are the
less explicit rules underlying human decision making.

A "detection" is defined to be a sensor response caused by the target and a
"false response" is defined to be a sensor response caused by something other than
the target.

The distributed sensors are monitored at the end of 24-hour intervals. Each
monitoring event is treated as a "single glimpse. "1 Continuous field observations
could also be modeled but would require more complex algorithms than those
developed to compute the examples in this section.

It is assumed that each sensor has a maximum detection range of 60 miles
and that the single-sensor, single-glimpse detection probability is PD = . 8 if the
target comes within this range of a sensor. Probability of detection is assumed
zero outside of 60 miles. The single-sensor, single-glimpse probability of false
responie Is PA .3 regardless of target location. Thus, if the target is within

•. j-8-
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II
60 miles of a sensor, then the probability of response is 1- (I-PD) (1-PA) . 86,
and if the target is not within 60 miles of a sensor, then the probability of
response is PA = .3.

It is assumed for illustration that all sensor responses are statistically
Independent in space and time, More complex assumptions could be made if
desired in a real application. The values PD .8 and PA = .3 are assumed unknown
to 4 the in ation processor. What is known, however, is that detection probability
and false-response probability are related by an ROC (receiver operating
characteristic) relationship

PA f f(PD)

where, for some fixed a > 0,

f (p) p9 for 0 <p:51.

Note that PA increases with PD and that PA = 0 when PD =0 and PA = 1 when
PD = 1. The true values of PD and PA will be estimated from the operationally
derived data as part of the processing.

Any function relating PA and PD could be used without significantly increasing
the complexity of the processing algorithms. In fact, it would not be difficult to
devise an algorithm which would perm'it postulation of an entire family of possible
HOC relationships when there is uncertainty as to which relationship is correct.
The correct relationship could then be Inferred from the operationally derived data.

The above assumptions are made in order to illustrate the information
processiiug ideas within the framework of a simple and easily understood mathematical

, model. They are not necessarily recommended for real-world applications.
Alternative models for detection are provided, for example, in references [1 1,
rm], [n 1, [o ], and [p 1; reference [a ] provides an hierarchy of decision-theoretic

models which treat detection and classification In a unified manner.

False responses result from complex interactions involving, among other
things, the sensor system, the environment, and hwtnn factors (see reference
(a 1). At the present time, these interactions are not well understood and many
of the factors which are involved (e. g., command aLtitudes and individual motivation)
are not physically observable or measurable. Any estimate of false-response
probability, therefore, could be in error by a significant amount. For this reason,
it is important to develop information processing procedures which do not require
exact knowledge of false-response prubabilities and which are adaptive in the sense

-1!0-



ithat initial estimates of these probabilities can be modified by observed sensor
responses.

In order to reflect initial uncertainty about target characteristics, sensor
capabilities, and environmental conditions, therefore, we shall assume a uniform,

probability distribution (known to the information processor) for PD on the
interval betweenI.5 and. 9. The expected value of this probability distribution is

7 and PA is determined from PD by means of the ROC funotion. (See references
[q I and [ r) for related analyses when the target is stationary and sensor capa-
bilities are not known precisely.)

Example 1 -- target Patrolling station. This example applies to the case of
a target patrolling station. It is assumed that scenarios can be postulated for
target motion based upon past observations of similar targets or knowledge of
the present target's mission objectives. Associated with each scenario is a credence
which expresses the scenario's relative plausibility. In the present example, a
scenario specifies a probability distribution for the target's location at equally
spaced points in time. The target is assumed to move along legs with constant
course and speed between leg endpoints. Monte-carlo procedures are used to
obtain a large number of sample target tracks for each scenario specified (more
details are given in the second section). The number of tracks generated for each
scenario is proportional to the associated credence. A particular target track is
generated by randomly drawing the endpoints of each track leg from the specified

i endpoint probability distributions.

Figure 11-3 presents the scenarios chosen for this example. Scenario 1 with
I credence. 33 describes a target patrolling in a clockwise direction beginning in

the south and moving west, then north, and then east. All track-leg endptoint
probability distributions are assumed to be circular normal with 30-mile standard A

deviations. Scenario 2 with credence .33 describes a target which also is
patrolling in a clockwise direction, but beginning in the north and moving east
and then south and west. The endpoint probability distributions are also normal
with 30-mile standard deviations. Scenario 3 with credence . 34 describes a
target which is patrolling in the center of the area without a regular pattern of
motion. For scenario 3, all track-leg endpoint probability distributions have
identical normal distributions with 60-mile standard deviations.

Figure r1-4 shows the time history of responses from the distributed field
simulated by a single replication of monte carlo. The target Is assumed to follow
Scenario 2 and its position as a function of time iF, also shown in Figure 11-4.

The positions were chosen to coincide with the means of the Scenario 2 distri-
butions. A 60-mile radius circle indicating sensor detection range is drawn about

the target's position so that the responses outside this circle (necessarily false)

may easily be identified.

1 -11-
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Ii FIGURE [1-4

THE HISTORY OF SENSOR RESPONSES
U FXA1%"-PLE 1 (TARGET PATROLLING STATION)

Notes: (1) Target follows Scenario 2 of Example 1.
(2) Detection probability is . 8 and false-responoe probability is . 3.
(3) x indicates target position (note 60 =I detection circle),N

* indicates a sensor response, and

0 Indicates no sensor response.
(a) 24 hours along track (b) 48 hours along track
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C F

(o) 72 hours along track (d) 96 hours along trackf

IAA
lBB

':1 C
TIID

II F



Figures [1-5 and 11-6 show the target location probability distributions before LI
and after processing the sensor response patterns shown in Figure 1[-4 (500
monte-carlo replications* were used to produce these distributions). Figure 11-5
shows the target location probability distributions based only upon the weighted
scenarios; no sensor response information is incorporated. Figure 11-6 shows
the distributions which result from incorporating sensor response information.
Figure 11-5(a) shows the target location probability distribution for the target
24 hours along its track based solely upon the scenario formulations with no
Incorporation of the sensor response patterns. Note that the target actually lies
on the boundary between cells B-3 and B-4 and that the sum of the probabilities
In these two cells is 27%.

Figure 11-6(a) shows the target location probability distribution. for the same
time as Figure 11-5(a) but updated by incorporation of the sensor response patterns
shown in Figure 11-4(a). Note that the sum of probabilities in the cells B-3 and B-4,
which include the target, remains about the same (28%) but that the probability
distribution has become more concentrated. It should be noted from Figure [[-4(a)
that there were 9 Wloe responses from the 23 sensors beyond detection range of the
target. This is somewhat higher than the 6 or 7 false responses expected based
upon the assumed value of PA .3 for the false.-response probability,

Figure II-5(b) shows the target location probability distribution for the target
at 48 hours along its track based solely upon the scenario formulations with no
Incorporation of any sensor response patterns. The sum of probabilities in the
cells B-4 and B-5 containing the target is 22W.,

Figure 11-6(b) shows the updated target location probability distribution at
48 hours along the track, incorporating the sensor response patterns shown ini
Figure rl-4(a) and in Figure II-4(b). The sensor response pattern given by
Figure II-4(b) is the result of very 'bad luck." Many false responses were obtained
in the areas occupied by targets following Scenarios 1 and 3 while at the same time
few responses were obtained in the area occupied by targets following Scenario 2.
The actual target (following Scenario 2) was detected only once out of two
opportunities.

As a result, the sum of probabilities in the cells B-4 and B-5 containing the
target decreases to 3%. Action based on the results at this stage would not have
much chance of success.

Figure 11-5(c) shows the target location probability distribution for the target
at 72 hours along its track based solely upon the scenario formulations. The
sum of probabilities in cells C-4 and C-5 containing the target is 33%,

For operational real-time applications, a much larger number of r'aplications
is suggested. In past utilization of similar systems, 2, 000 to 10, 000
replications have been employed routinely.

-14-
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i FigureD the corresponding updated target location probability
distribution Incorporating all the sensor response patterns up to and including

I ~those shown in Figure 11-4(c), The sum of probabilities in calls C-4 and C-5 .

to now seen to Increase dramatically to 85%. Apparently, a sufficient number

of patterns lave been processed at this point for the updated target location3 distribution to begin to converge on the target's actual location.

Finally, Figures 11-5(d) and II-6(d) provide the before and after comparisons
corresponding to the target at 96 hours along its track. Without use of sensor
response patterns, the sum of the probabilities in cells D-4Cand D-5 containing
the target is 26% as given in Figure 11-5(d). After use of all iMensor response
patterns shown in Figure 11-4, the sum of the probabilities In cells D-4 and D-5
is 97%.

Table UI-1 shows the influence of the sensor responses on the scenario
credences and the mean detection probability. Recall that Initially the scenario
credences were assumed equal; the sensor detection probability was assumed
uniformly distributed between . 5 and , 9 with mean value of. 7. Processing of
the sensor response patterns at 24 hours and 48 hours decreases the credence
associated with Scenario 2 from 330 to .211 and. 044, respectively. The
results improve as the response patterns for 72 hours and 98 hours are incorporated.
The updated weight for Scenario 2, the actual scenario, rises to .952 following
incorporation of the sensor responses obtained at 96 hours.

I The mean detection probability DD before processing is . 7. In the present
example, the actual but unknown detection probability is PD = . 8. AfterU processing all the sensor responses, the updated mean detection probability is .77.

Thus, in spite of an unknown and relatively high false-response probability,
the processing algorithms produce (in this example) a very accurate indication
of the true target scenario and single-sensor detection probability, Moreover,
after processing the sensor response patterns, the target location probability

i distribution becomes quite concentrated about the true location of the target.

Example 2 --. target in transit. This example considers the problem of
* localizing a target as it transits through an area covered by the distributed senior

field. The target (if it shows up) is expected to begin Its transit through the area
between time 0 and time 72 hours, but the exact time of transit is unknown. It is

i desired to use the sensor response patterns to detect the target's presence in the
area and to localize it as It moves through.

Figure U-7 presents the scenarios formulated for this example. Once again,
the location of the target at the endpoint of each leg is specified by a normal
probability distribution. The distributions are elongated in the east-west direction,
however, in order to represent the uncertainty in the target's location across a
"front." The standard deviation in the east-west direction is 60 miles and the
standard deviation in the north-south direction is 30 miles.

I -15-



FIGURE II-5 j :

TARGET LOCATION PROBABILITY DISTRIBUTIONS
EXAMPLE I (TARGET PATROLLING STATION) - NO SENSOR INFORMATION USED ii

Notes: (1) Target follows Scenario 2 of Example 1.
(2) Detection probability is .8 and false-response probability is .3.
(3) x indicates target position (note 80 mi-detection circle).

(a) 24 hours (b) 48 hours
1 2 3 4 5 6 1 2 3 4 5 6 •'

A Tar 02 A Tar *

B .01 .12 .15 .01 B .01 .03 1 .10 .01

C .01 . .8 .01 C .01 .03 .04 . .03

D .01 .09 .07 .01 D .01 .06 .07 .04 .01

E .17 .12 E .12 .11 .03

F .02 .01 F .03 .04

(c) 72 hours (d) 96 hours .
1 2 3 4 5 6 1 2 3 4 6 6

A A

B .01 1 B .02 .05 .02

- a~ 
~ arg etaaa

C .02 .07 .18 .15 C .01 .13 .15 P 4I ýp rrget

D .17 .20 .05 D .04 .09 .18 .08 .01

E .01 .03 .02 E .01 .01 .- 31

F F
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I FIGURE 11-6

TARGET LOCATION PROBABILITY DISTRIBUTIONS
EXAMPLE 1 (TARGET PATROLLING STATION) - ALL SENSOR INFORMATION USED

Notes: (1) Target follows Scenario 2 of Example 1.
(2) Detection probability is .8 and false-response probability is .3.(3) x indicates target position (note 60 mi aetection circle).

I TN
(a) 24 hours (b) 48 hours

21 3 4 5 6 1 2 3 4 5 6

A Tart A Tar t

B .11 .07 B .02 .02 .01

C 2C .12 . .

D .08 .06 D .04 .18

E .13 .09 E .11 .36

F .06 .02 .07

I
(c) 72 hours (d) 96 hours

1 2 3 4 5 6 1 2 3 4 5 6
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Tar t
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TABLE I[-1 L
THE INFLUENCE OF SENSOR RESPONSES ON ESTIMATED PARAMETEIR VALUES,.1

EXAMPLE 1 (TARGET PATROLLING STATION)

Notes: (1) Target follows Scenario 2 of Example 1.

(2) True single-sensor, single-glimpse
detection probability is. 8 and
false-response probability is •.:

Moan of Single-Sensor,
Scenario Credences Single-Glimpse Detection

Probability Distribution
Scenario: 1 2 3 (true value is .8) I

Initial Assumptions .330 .330 .340 .700

94 hrs .299 .211 .490 .823

Time 48 hr. .525 .044 .431 .811
of

Field
Response 72 hrs .036 .712 .252 calculation not available

96 hrs .001 .952 .047 .770

-18- .
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SCENARIOS FOR TARGF'T MO'T&ON
E_ MMPLES 2 AND 3 (TAItGgT IN TRNSIT)

Notes: (1) Ellipses fidicste the 2a-uncertainty in target position at
the endpoints of each log.

(2) Scenario 5 (Credence -. 2) corresponds to no target transit
during the time period of interest.

(a) Scenario 1 (Credence 2.)2) (b) ,enanrio 2 (Credence =.2)

I 1 2 3 4 5 6 1 2 3 4 5 6

- l •-.. --- • -'--
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D D
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(c) Scenario 3 (Credence =.2) (d) Scenario 4 (Credence -. 2)
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Scenarios 1 through 4 differ only in the assumed time of entry into the area,
i.e., Scenarios I through 4 are based, respectively, on the target reaching the
midpoint of the first row of cells at 0 hours, 24 hours, 48 hours, and 72 hours. A

Scenario 5 (not shown) is included to cover the contingency that there is no target .
transit during the time of interest. The initial credences for all five scenarios
are (.qual.

In certain cases, the processing algorithms will produce good results even
when the actual target motion does not conform to any of the scenarios specified.
In order to demonstrate this fact, the target is assumed actually to begin
penetration at 12 hours. This is midway between the assumptions o( Scenario 1
and Scenario 2.

Figure 11-8 shows the target's actual position and the sensor response
patterns at 24-hour intervals. The sensor response assumptions are the same
as those used in Example 1.

Figures 11-9 and 1[-10 are based on bOO monte-carlo replications.

Figure 11-9 shows the target location probability distributions when no sensor

response patterns are processed by the system. Probabilities associated with
locations outside of the grid are not shown. These probability distributions are

based solely upon the initial scenario formulations. Note that the actual target's
position lies within a cell with probability . 03 throughout the transit. In order
to demonstrate the flexibility of the algorithms, the computation of this example
was based upon the assumption that the endpoint probability distributions are
correlated so that the simulated target tracks through the area will be straight
lines (no zig zags). This accounts for the fact that the target location probability
distributions in Figure [[-9 have the appearance of a single distribution sliding
through the area.

Figure II-10 shows the target location probability distributions resulting from
processing all sensor response patterns. Note that the target is located in cells
having relatively large probabilities and that the probability distributions are
much more concentrated than was the case in Figure 1[-9. It is also of interest
to contrast the probability that a transit has begun (given in the notes corresponding
to each time period) with the initial probabilities based on the scenarios only
(given by the first general note). Once the target actually penetrates the area,
these probabilities are substantially higher than the corresponding probabilities
based upon the initial scenario assumptions alone. For example, at 24 hours,
the probability Is .40 that a transit has begun based upon the scenarios only.
The corresponding probability making use of the sensor responses is. 92.

It is also interesting to contrast Figure 11-10(e) with Figure 11-9(e). The
target has completed transit of the area at this time; this is quite apparent in
Figure 11-10(e) which shows only 2Z!' probability of the target being in the area.
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3 Table 11-2 shows the influence of the sensor responses on the scenario
credences and the mean detection probability. Recalling that the target enters
the grid area midway between the times specified by Scenarios 1 and 2, we see
that at times corresponding to 24 hours and thereafter, Scenarios 1 and 2
together eccount for more than 90% of the total scenario probability. The sum
of initial credences for these scenarios is .40.

As in Example 1, the mean of the detection probability distribution appears
i to be converging towards the true value . 8.

Examole 3 -- target out of arrid area. This example to based upon the same

scenarios as Example 2 but corresponds to the case where no target penetrates
the area, 1. e. where Scenario 5 is the correct scenario. As in Examples 1
and 2, 500 monte-carlo replications are used.

H Figure II-11 shows the patterns of sensor responses which, under the
present assumptions, are all false. No target locatioq probability distributions
were computed for this example.

Table 11-3 shows the influence of the sensor responses on the scenario
credences and the mean of the detection probability distribution. The shaded
area in the table corresponds to scenarios specifying that the target has not yet

entered the area. Note that as more sensor response patterns are processed,
the probability tends to shift towards the "shaded" region and that at the end of
96 hours the largest scenario credence is associated with Scenario 5--the
correct scenario.

I] As In Examples 1 and 2, the mean of the detection probability distribution
appears to be converging towards the correct value of . 8. Use of the ROC curve
permits detection probability to be estimated from false-response data when the
target is not in the area.

II Information Processing Procedures

This section describes the information processing procedures used to obtain
fl the results given in the examples in the preceding section. A more general

treatment is given in Appendix A. Our purpose here is to explain the concepts
in terms of the simple model used in the preceding section so that the reader may
construct suitable models for other applications.

•The processing system consists of two information input files, SCENE and
DETECT, two state information files, UFILE and WGHT, and four computer
programs, START, MAP, TRANS, and OBSERV, which operate on the state
"information files. These files and computer programs ars discussed in the
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TIME- UISTORY 0O' SENSOR RJEýPgNSZ
EXAMPLE 2 (TARGET IN TRANST

Notes: (1) Target is ft 12-hour late Scenario 1 or a 12-hour early Scenario 2 of Excample 2.
(2) Detection probability i5 .8 and false-response probability is .3.
(3) x indicates target position (note 60 mi. detection circle),

40indicates a sens,:) response, and
Qindicates no sensor response. N()2 or

(a) 0hours ()2 or
Note: Target outside grid.
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(e) 96 hours
Note- Target outside grid.
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TARGET LOCATION PROBABILITY DISTRIBUTIONS
EXA6MPLE 2 TARGET IN TRANESIT - NO SENSOR INFORMATION USED

Notesa (1) Assumed prior probabilities that target transit has begun:
Time (hro): 0 24 48 72 96
Probability: .20 .40 .60 .80 .80

(2) Only probabilities within the grid are shown.
(3) x indicates target position. +

I N
(a) 0 hours (b) 24 hours

Note: Target is north of grid.

1 2 3 4 5 6 1 2 3 4 5 6

A .02 .03 .07 .02 A .02 .04 .02

Tar8 t ,

B .02 B T . x .3 .01
.03

c C .02 .07 .02

D D .02

E E

F F

(c) 48 hours (d) 72 hours

1 2 3 4 5 6 1 2 3 4 5 8

A .02 .05 .03 .02 A .01 .03 .04 .02

B .01 .03 .02 D .01 .03 .02
a -- --- i-i-,- -_

c .02 .04 .02 C .02 .06 .03 .02
- -- n- - -. - -

D 3 .01 D .01 .03 .02

E .02 '. .07 .02 E .02 .n4 .02
S. . .. - ~ ~Tn'rge mnx1

F .02 F .0 " .01
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(e) 96 hours
I Note: Target is south of grid.

I 1 2 3 4 5 6

A

B .01 .01'J iii a

C .01 .03 .04 .02

D .01 .03 .02

E .02 .05 .03 .02

F .01 .0:1 .02
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TAAGET LOCATION PROBABILITY DISTRIBUTIONS
• EXAMPLE 2 ITARGET IN TRANSIT) - ALL SENSOR INFORMATION USED

Notes: (1) Assumed prior probabilities that target transit has begun:
Time (hrs): 0 24 48 72 96
Probability: .20 .40 .60 .80 .80

(2) Only probabilities within the grid are shown.
(3) x indicaten target position.

(a) 0 hours (b) 24 hours
Notes: (1) Takget is north of grid. Note: Estimated probability that

(2) Estimated probability that transit has begun is . 92.
transit has begun is .73.

1 2 3 4 5 6 1 2 3 4 5 6

A .01 .55 .02 A
Tar st

B .13 B • x
.664

C c .07.

-) D

E E

FF

(c) 48 hours (d) 72 hours
Note: Estimated probability that Note: Estimated probability that

transit has begun is 94. transit has begun is. 97.

1 2 3 4 5 6 1 2 3 4 5 6

*A .01 A .04

* B B
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•DD . .07 .04
.36

E E .09 .06.e Tart

F .02 03 F 3 4
3 J4

-26-

- ______________________-j



[I

(e) 96 hours
Notes: (1) Target is south of grid.

(2) Estimated probability thatii transit has begun is. 95.
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T21BjW5TQRY O)F SENSOg RESpONSESj
EXAMPLE 3 (TARGET OUT 0FO~MA

Notes: (1) Target is out of grid area covered by sensors.j

(2) All responses are false. The falme response
probability is .3.

(3 iniae0 eso epne n
(3 indicates no sensor response,an

(a) 0 hour. I (b) 24 hours

A IJ

BB I
C C I

D D

E

F4

(c~) 48 hours (d) 72 hours
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T A B Li&

THE INFLUENCE OF SNSOR RESPONSES ON ESTIMATED PARAMETER VALUES
EXAMPLE 2 (TARGET IN TRANSIT)

Notes: (1) Target it a late Scenario 1 or an
early Scenario 2 of Example 2.

(2) Trim single-sensor, single-gUmpse
detection probability it .8 and
hise-response probability o. .3.

Mean of Single-Sensor,
Scenario Credences Single-Glimpse Detection

Probability Distribution
Scenarieo 1 2 3 4 5 (true value is 8)

InitialAssumptions .20 .20 .20 .20 .20 .70

0 hre .73 .07 .05 .07 .08 .67

24 hre .85 .07 01 .04 .03 .72
Timeof]
of 48hro .76 .18 .01 .03 .03 .73Field" 1

Response

72 hrs .45 .45 .00 .06 .04 .77

96 hre .33 .60 .00 .02 .05 .78

-30-



I

TABLE [1-3

THE INFLUENCE-OF SENSOR RESPONSES ON ESTIMATED PARAMETER VALUES3 EXAMPLE 3 (TARGET OUT OF GRID AREA

Notes. (1) Target is out of grid area (Scenario 5 of Example 3).
All sensor responsos are false responses,

(2) True single-sensor, single-glimpse deteotion
probability is . 8 and false-response probabllf.ty is. 3.

(3) Shading indicates scenarios placing target out of
area at the specified times.

I
Mean of Single-Sensor,

Scenario Credences Single-Glimpse Detection
Probability Distribution

Scenario: 1 2 3 4 5 (true value is, 8)

[nitial Assumptions .20 .20 .20 .20 .20 .70

0 hr. .20 17-'/ 3S .19 .11% 87

24 hr .02 .. 31 .

Time
Field 48 hrs .00 .04 .37 <33 .26. .85

3 Response
72 two .00 .03 .41 .17 ."39' .84

96 hrs .02 .06 .07 .08 .77 .83

I
3 -31-,"
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following subsections. A processing system flow chart is provided in Figure
11-12. The file UFILE contains the "constructs" menationed in the heuristic
description given at the beginning of the chapter. The file WGHT contains
numbers ("weights") which are proportional to the posterior probabilitIes of
the constructs.

File* SCZNE and DETECT. All scenario Information is stored in the
information Input file SCENE. This Information consists of the value of tile
credence ci for the ith scenario for all 1 < I < 4 the time 8 specified for the
target to complete each of the K single logs, and the parameters for the track-
log endpoint, probability distributions Ai0c) for 0 < k < K and 1 .4 I< 1 . Here,
k6 indicates the endpoint time and I indicates the scenario.

The information input file DETECT prov~des the known parameters
characterizing the diotection mechanism (I.ea., the bounds on D'n dAd the parameters
of the ROC function.

Files UILE and WGHT, The fie U FILE contains Nr records which
provide the samples from the monte-carlo simulation of terget position and
other parameters. The contents of UFILE vary with time and, therefore, It Ito
convenient to let UFXLE (I) denote the contents of UiVILE at simulation tliwn t.
Each of the Nr records in UP~ILE (t) contains statistical rample values for the
following random variablest

;1t target's latitude (degrees) at time t

20- targot's longitude (degrees) at timne t

= target',n velocity comiponent (degrees/hour)
in the north-mouth direction

i2 (t) = Uarget'g Velocity cox1;.QrAM~t tdegrees/hour)

I- target's scenario index

= target's probability of being detected by a
single isinsor' on a single glimpse given that
target in within detection range of the sensor,

WGHT(t) denotes the contents of file WGHT at simulation time t and contains
Nr records, each providing the "weight" for the corresponding record of UFILE (t).
The weights are calculated using Bayes's formula and indicate the extent to which
the records of UFILE(t) are consistent with the observed sensor field responses.
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3 IFIGURE [1-12

PROCESSING SYSTEM FLOW CHAR•T

3! (a) Initial Processing Step

UFLEO)
-- (;DETECT) WGT" )

(b) Update from time tI to time T,

-IFILE(h) TRANS UFILE(_,,) OBERV .

(c) Update from time rj-1 to time Tvj forj 2, ... ,

Ii i

1](d) Upft ,O time, t2 ,. T-,

![ •'FI•E~,,,•-. =! ... TRANS. .2- ý UFILLE,02

_(-
'H ... . ; . . " ' " • -' ' -• -' -" - . . . .. .. ... . .... .' ... . ....... . . .. ... .. " ' • • ' ' --.... ... .. . . .... . ., '



I.

Large weights correspond to a high degree of consistency. The method of
computing the weights i discussed below.

Pron• m START. The computer program START creates UFILE(0) and
WGHT(0). To do this, It uses the data in the scenario input file SCENE and the
data In the detection characteristics input file DETECT.

The records of UFILE(O) are created one after the other. To create a,
given record (say, the nth record), a sample scenario index tn is drawn in
aooordance with the prescribed credences.

For the nth record, the values &(0) and z2(0) of the random variables zl(0)
and zw2 (0) are found by sampling from the probability distribution Ajn(0).

Th a ,Po,,,Anl An
peedcomponents sl(0) and s2(0) corresponding to the random variables

il(O) and 82(0) are found by sampling from At n(l) to obtain 0(6) and t1n1) and
then computing 1:

An 1 An
h(o) =g (z1(6)"- z1(o))

and

An 1 An An
2 -(0) (z2(6)- TO)).

An The nth record of UFILE(O) is completed by determining the ample value
1-1 for the random variable PD. This Is done by taking the minimum value A
and the maximum value B for PD from the input file DETECT and computing

P = A 4A(B-A)

where, here and in what follows, • denotes an independent draw from a uniform
distribution on the interval [0, 11.

The file WGHT(O) is generated by program START so that all weights are
equal to unity, i.e., if wn(o) denotes the content of the nth record of WGHT(0),
then

wn (0) 1 for 1<_ n_< Nr. ([[-1)

-34-



U Equation (11-1) reflects the fact that all records of UFILE(O) are considered to be
equally likely a priori. The weights will change, however, whenever information
is obtained by observing the sensors.

Program TRANS. The computer program TRANS updates file UFILE to

reflect target motion In accordance with the scenario Information provided in1 the scenario input file SCENE. No change in file WGHT is made by TRANS
since no new sensor information is input to the system during this operation.

[I In order for TRANS to update UFILE, it is assumed that the tracks between
leg endpoints are straight when expressed in coordinates of latitude and
longitude. That is, if ti and t2 are times corresponding to target positions on
the same leg, then for 1 1 and 2 and for t 1j<! t < t2 ,

z(t) 12 L z1(t1) + I z(t 2).
t2 -....t l-

Suppose that TRANS Is to update UFILE from simulation time t1 to simulation

time t2. For the nth record of UFILE(t), let p and v be chosen so that p 6 < t1 < (•+1)
and v6 < t2 <_ (Y•+1)6 .

IIf v then the target has not moved to another leg; consequently, for t = 1 and 2

An An 2" [.j zZ 02) =- z101) + 0t2- t1) tn(t1

LI and
An Anal s(t 2) 0 s(t).

if + 1 p+1, then the target has moved to the next leg and one must sample
om the prýbability distribuxtion Wn(v1l) in order to obtain the target's position
n(v +8), 7n(v6+6)) at time (v+1)6. Since, for v = +1 and1 l1 and2,

An An An
z1 (V6) = z1 (tl) + (v6-tl) s1 (t1 ),

the target'as position at time v6 as well as (V4,1) 6 is known, and, therefore, the
velocity components on the log between times v 6 and (v +) 6 can be computed.
Thus, for I 1 and 2,
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An An

An fl ( 6 +•) -6 Z (v6)
0s(t2 ) (

and target position at time t2 is given by

•:An An An
0(t2) = Z(v 6) + (t2 - v6) 81(t2 ). (I1-3)

Finally, if v > p+2, then the target's position at time t2 is statistically
independent of the target's position at time t1. The velocity and position of the
target at time t2 are found by sampling the probability distributions qh'n(v") and
&n(v,6 + 6) to determine 'n(v6) and 'n(v6 + 6) fort = 1 and 2 and then by using
equations (11-2) and (H1-3).

Program OBSERV. The computer program OBSERV updates file WGHT to
reflect information gained from the sensor field. Suppose that WGHT(t1 ) is to
be updated to time t2 . Let rl, T.. 71 denote the times at which the sensor
field is observed between times t1 and t2 and assume that tl < r1  t 2

Let t' - t1 and T' = T1. The first step is to update UFILE(t') to time 'r. This is
done using the program TRANS described above. Then the updated file UFILE(-'r),
file WGHT(tt), and file DETECT are input to program OBSERV. The weight
' fn(wt) corresponding to the nth record of WGHT('r") is determined from ýn(ti)
corresponding to the nth record of WGHT(t') by multiplication by the conditional
probability of observing the actual field responses. That ib, 41n(Tt) is computedby the formula (essentially Bayes's formula without normalization)

A-' L A An[ An A
ýn(T'l ='tn(t,) [1., i. At [1.p rA)(i-..b)lt P%]t [(1 _ PA)1_ L4 (11-4)

where the detection probability P •s taken from the nth record of UFILE (r')

and the false-response probability f( 13n) is determined from n by use of
the "ROC" function f. In our examples, f is defined for simplicity by f(p) = pa;
the parameter a describing f is obtained from the input file DETECT.

An, An
The exponents L 1, " L., t4 depend upon the position of the target (ZI(T'), (T'))

given in the nth record of UFILE(T'). The expnnents are defined as follows:
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Li is the number of non-responding sesisors which
are beyond detection range of the target,

i" L2 is the number of non-responding sensors whicharm within detection range of the target,

L is the number of responding sensor. which
are beyond detection range of the target, and

L is the number of ret pondint sensors which
are within detection range of the target.

Once files UFILE( v- 1 ) and WGHT(r- 1) are completed for any 2< v c
files UFILE(Tv) and WGHT(-i,, ) are obtained by repeating the procedure described
above with t' = Tv -1 and T1 = - v.

When files UFILE(T ) and WGHT(,-.) are obtined, the computation is
complete if t 2 = . If t 2 > 'r'n, then the final update consists of using TRANS tooperate on file dFILE(Th in order to generate UFILE(t2). Since no newobservations occur between times -r and t 2 , WGHT(t) is a replica of WGHT(r).

o Per ram MAP and other order Let the random vector S(t) be defined by

"'U(t) =(zl(t), 2 (t), s1 (t), s 2 (t), k, PD).

"An An An An An An P)
Each record U (t) (ztpt), z 2 (t), sl(t), s 2 (t), k , P) of UFILE(t) is then an
"independent sample of U(t).

Any probability statement associated with the random variable U(t),
"conditioned upon observation of the sensors, may be estimated using files JFILE(t)
and WGHT(t) and the formula (B is a set representing an event)

Sw~An~t
n. c n I(B)w W

Pr{U(t)E E Bsensor observations} w (1N-5)
,~Nr

2r; wn(t)
n=1

An

where I(B) {n I Un(t) . B) . For example, the computer program MAP operstes
on files UFILE (t) anrd WGHT(t) to produce a probability map for the target's location.
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To do this, MAP accepts inputs which define a grid over the geographical region
of interest. ThiF grid might consist, for example, of cells each covering one
degree of latitu:.'a 8 ,d ona deý.'ree of longitude,

Let the grid cel!N bi d4c..mted C-1 for 1 < j < J and let the corresponding
target location probabilities dete,- mined by MAP from files UFILE(t) and WGHT(t)
be denoted tj (t) for 1 < j < J. Then the values of tj are computed by MAP for B
defined by

B = ((bl, b6 )1 (bl, b2 ) Gj}1.

The updated cradence for the th sceniario is given by equation (U-5) for B
defined by

B = Qbj,., b6) Ib5 = }.)'I

Finally, the mean of the updated probability distribution for detection probability
is computed by

Nr An An
E PD w (t)

Exp[ED Isensor observations] n=1 (I6)
Nr
E wn(t)

n=1
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CHAPTER III

THE APPLICATION OF INFORMhTION THEORY TO OPTIMAL SURVEILLANCE
IN A FALSE TARGET ENVIRONMENT--AN EXPLORATORY ANALYSIS

This chapter examines in an exploratory way the application of Information
theory to optimal allocation of surveillance resources in a false target
environment. The objective here is to investigate methods of allocating ASV
resources for the purpose of shaping the target location probability distribution
to serve certain tactically useful purposes. The preceding chapter provides
methods for updating the target location probability distribution to incorporate
the sensor information resulting from these allocations.

We have been motivated by a strong heuristic attraction to policies which
build kip the information content of the target location probability distribution.
We are aware, however, that much of this attraction is due to semantics (i, e.,
the fact that the language of information theory is so suggestve in the present
context) and we have tried to exhibit more substantive reasons why further
development of "maximum information-gain policies" may be desirable from
an operational point of view.

The term "optimal" Is used in the title of this chapter to reflect a desire
rather than to state an accomplishment. We desire to find the best surveillance
policy within the context of our tactical scenario, and, to this end, we formulate
several policies and examine their properties. The policy based on maximizing
the information content of the target location probability distribution appears to
be close to ontimal (among those plans considered) in all cases examined.
Further work is required, however, before more precise statements can be made.

The investigation is approached numerically and theoretically. The numerical

work is based upon monte-carlo simulation of the properties of selected
surveillance policies, These results are presented in this chapter. The theoretical
work has been directed towards establishing the connection between the application
of information theory to surveillance and the application of information theory to
statistical hypothesis testing. The latter applications have an extensive literature,
The results of this theoretical work and review are rather technical and are
presented in Appendix B.
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From both perspectives, numerical and theoretical, we feel that the definition
of information used in information theory has the promise of providing a useful
measure of effectiveness for judging the utility of alternative allocations of diverse
ASW resources in certain kinds of surveillance missions.

The first section presents the tactical setting and basic assumptions under-
lying the numerical analysis. The surveillance policies considered are described
in the second section, and the numerical results are given in the third section.
The fourth section presents conclusions and provides a brief review of related
analyses which have appeared in the operations research literature. The related
statistical literature is discussed in Appendix B.

Tactical Setting and Basic AssumrA..ons

We shall assume that there are J search cells, one of which contains the
target. The target may move from cell to cell in the course of the search, and
target motion is modeled as a Markov process as described below. The
surveillance procedure consists of assigning ASW search effort to a selected
grid cell and then estimating the target's location (designating the cell containing
the target) based upon the search results. This is similar to the "whereabouts" I
searches discussed in reference [ e 1.

The surveillance operation is carried out sequentially in stages where each
stage consists of assigning search effort to a single cell, evaluating the search IJ
results, and then estimating the target's location. Changes in target position
only take place between stages.

As an example of a potential application, consider a VP operation where each
day one or more flights are sent to an area specified for that day. At the end of 1]
the day, the search results are evaluated, the area for the next day's flight is
determined, and the best estimate of the target's location (bpecified by a grid
cell) is passed to the operational commander. 1]

Sensor-response assumptions. If a sensor response is obtained in a cell

searched, this does not necessarily mean that the target is located in that cell.
Because of the possibli~ty of false responses, one never knows with certainty I]
that the target has beer detected.

It is assumed that the performance of the ASW search system is idealized
In terms of a J X J response array,

11 (
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where R(i, J) is the probability that an increment of search effort applied to the
jth cell will result in a response, given that the target is located in the ith cell.
Here, as usual, 1 is the row index and j is the column index. As in Chapter II,
a response is a decision, based upon the available information, in favor of the
hypothesis that the target is present as opposed to the alternative hypothesis
that the target is not present.

At the end of each stage, a cell is selected to contain the target. For all
policies examined in this report, the cell selected is the one having the highest
target location probability based upon evaluation of the search results.

The problem is to determine a surveillance policy (a procedure for assigning

search effort and estimating target location) which will maximize effectiveness
over an extended period of time.

Measure of effectiveness. In order to measure surveilDourie effectiveness,
let S(k) denote the probability of correctly selecting the cell containing the target
at the end of the kth stage. The function S is called tho "success function." A
surveillance policy which maximizes S(k) is called a "koptimal" surveillance
policy and a surveillance policy which maximizes S(k) for all k > 1 is referred to
as a "uniformly optimal" surveillance policy.

A success occurs if the correct cell is selected, although this fact can
never be confirmed, since any sensor response is possibly due to a non-target
cause. Confidence in the specified target Locations can only be obtained by an
accumulation of evidence, no single Item of which is decisive.

Target motion assumptions. Target motion is assumed to be a Markov
process described by an initial probability row vector d and a transition
matrix D. The resulting target motion stochastic process may or may not be
a stationary process, depending upon whether or not d is the stationary vector
for the process. In more general non-Markovian situations, the methods of
Chapter 11 can be used to model the motion of the target,

For this illustration, it will be assumed that D Is a circulant matrix (see,
for example, page 51 of reference [s ) havving the form

6.6
J IJ 1 "j

, i-.- it • ... , V jm l
6, L-J-1) 6, 6

D ,(Il-i

6 6 (.1-1)
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where 0 < (5 < 1. The process with transition matrix D given by equation (IIl-1)
depends upon a single parameter 6 and is stationary if and only if d is the uniform
distribution do) m-- 1/J for J - 1, *.., J.

If dk denotes the target's distribution over the J cells after the kth transition,
then•it is not difficult to show that for j 1, ... , J, and k 1, 2, ... ,

dklJ) . 6+ (1)k [d(J)- .

Thus, each component in the target distribution vector converges monotonically
to the uniform vector. We shall call 6 the dispersion constant. Note that if
6 = 0, then the target is motionless, and if 6 = 1, then the target distribution
disperses to the uniform distribution in one step.

The object of the tracking policy is to overcome the dispersive effects of
random target motion by the expenditure of search effort.

Formulation in terms of stochastic control. It is useful to look at this
surveillance probleni as a problem of controlling a Markov process (for back-
ground in stochastic control see, for example, reference t I).

Consider a dynamic system whose state is the probability vector P for the
target's location. We are particularly interested in this vector at the beginning
of each stage. Except for the first stage where P is assumed known, P depends
upon random sonsoc observations, and, therefore, P is itself a random variable.
In fact, the time behavior of P is Markovian when d, D, and R are assumed known
without error. For three cells 1 J 3), it is possible to visualize P as a point
(P(1), P(2)) in the plane since =1 P(j) 1 1. Figure I[1-1 shows the state space
for P based upon this intorpretation.

The object of the tracking policy is to provide information which will permit
one to correctly select the cell containing the target at the end of each stage.
Since the predetermined selection rule is to pick the cell with the highest posterior
probability as determined by the search results obtained during the stage, we can
consider the state space of P to be the union of three disjoint (except for boundaries)
regions labeled 1, 2, and 3 in Figure lIl-i. If the point falls in region j at the end
of a stage, then the jth cell is selected as the cell containing the target.

The "control" is a decision function or policy which depends upon P at the
beginning of it stage and which indicates the cell to be searched during that stage.
If the target is actually in cell J during a stage, then the target is visualized as
occupying the vertex determined by P(j) - 1. The purpose of the control is to
guide the point P as often as possible Into the sot which contains the target.
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FIGURE III-i

I] STATE SPACE DIAGRAM FOR TARGET LOCATION PROBABILITY VECTOR

[I P(2)

1.0 If P falls within this region,
then Cell 2 will be selected
for the target's location.

fl P(2)w 1
Illustrative sample path for P

11 2

jj If P falls within this region,
than Cell 1 will be selected
for the target's location.

H ()13 1 P(1) 1

P(1)
' - -"If P falls within this region,

then Coll 3 will be selected
for the target's location.
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Let PB denote the vector P at the beginning of a stage, and let PA denote
P at the end of a stage. The target is assumed to move only between stages,
and the PB for a given stage is computed by PB = PAD where PA is the vector
P at the end of the previous stage and D is the transition matrix.

For the response matrix R and a decision to search cell m, the vector PA
will depend upon whether or not a response is obtained. If a response is not
obtained, then

PBHJ) (1- RO, mn))
PAO) .l...., for 1 < J• J.

i PB(i m) (I - R0, m))

If a response is obtained, then

PBO) R(j, m)
PA. - for 1.< JJ,

X P(0) J Bm) (I- R0,m))

It is theoretically possiblb to design a control which will maximize probability
of success S(k) at the enJ of the kth stage, This would be the generalization of
the single-stage look-ahoad policy described in the next section. In fact, by
working backwards in time, this k-optimal control can be found by dynamic
programming, although the solution in rather complicated.

Our main Interest, however, is in the situation where all 4tages are
important and where it is not natural to establish a fixed terminal time. In order
to gain insight into this situation, we will examine the behavior of four decision
policies (i.e., controir); these are described in the next section. Two of the
policies, the single-stage optimal look-ahead policy (Policy [) and a control
baced upon maximizing the information content of the posterior distribution
(Policy II), are chosen for their intuitive appeal. The other two policies, a
policy based on searching the highest probability cell (Policy I1l) and a policy
based upon searching the ceols in a regular rotation, are chosen because they
are simple and easy to compute and they give us "bench marks" for comparison.

It should be noted that the highest probability cell policy has been mentioned
as optimal in a closely related scenario examined in reference [ uJ . In reference
[w 1, however, the search stops as soon as the first response is obtained and
the search is successful if and only if the response oocurs in the cell containing
the target. Our measure of effectiveness is quite different.
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Description of the Surveillance Policies

U This section describes the four different surveillance policies considered.
These are the optimal single-stage look-ahead policy (Policy I), the maximum
information-gain policy (Policy II), the highest probability cell policy (Policy 11),
and the uniform surveillance policy (Policy IV). They are described individually
in the subsections below.] ~The suocese function defined in the preceding section is taken to be the

measure of effectiveness and is computed by monte-carlo simulation. For the
kth search stage of the nth monte-carlo replication, lot

1 If the target cell is correctly specified
Sin, k)[1 ~nk) 0 otherwise.B}

For N replications, the kth stage success probability S(k) is estimated by the
formula

's• 1 N ASl (k)• M- S (n, k).
N n=l

11 For each comparison, an Initial target location probability distribution d
and a transition matrix D are specified to doscribe the targot's movements and a
response matrix R is specified to describe the search environment and the sensor
system.

The monte-carlo calculation begins by drawing a random number to pick
the cell for the target's initial location. This eleetton is made in accordance
with the initial target location probability distribution d.

The search policy specifies a search cell for each stage based upon the
current before-search target location probability distribution PB; then the
search results are simulated in accordance with the target's actuW% location and
the probabilities given by the response array R. Next, the after-search target
location probability distribution PA is determined from the simulated search
results, and, finally, the after-search highest probability cell (based upon PA)
is selected as the target cell. The target position is then updated in accordance
with the target motion transition matrix D at the end of the stage and a new

* estimate of the before-search probability distribution PB is obtained by computing
"1PB = PAD. The process is then repeated.
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The optimal single-stage look-ahead policy (Policy I). The optimal single-
stage look-ahead policy is to search in the cell which, based upon the estimated
vector PB, maximizes the probability of correctly selecting the target's cell
at the end of the stage. This is a generalization of the optimal whereabouts plan
formulated in reference [a I for searches without false responses.

More precisely, at the beginning of any stage, let PB(t) denote the before-
search probability that the target is located in cell i and let R be the response
matrix. Let PA(r, ij) be the conditional after-search probability that the target
Is located in the ith cell given that the jth cell was searched and result r was
obtained. Here, r = 1 indicates a target-like response and r = 0 indicates no
target-like response. Let Q(r, i,j ) denote the probability of obtaining search
result r given that the target is in cell I and that cell j is searched. Then

R(L, j) for r = 1
Q(r, t, J)

-R(O, J) for r = 0.

The probability function PA is determined from PlB and Q by the equation

pA (r,IJ) PB(i) Q(r,I, J)

2) PB(m) Q(r, m., J)
m=l

Let X(r, J) denote the cell selected to contain the target given that cell j was
searched and result r was obtained. In view of the selection rule, which states that
the cell with the highest target location probability should be chosen, we have

PA(r,X(r,j),J) Ž pA(r,i,j) for 1< .< J.

Let B(k) denote the before-search probability that if the kth cell is searched,

then the target cell will be correctly selected based upon the search results. If

(1 if X =1

C (x)
(0 otherwise,
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| J 1
SB(J) E PB() R(r,i, j) c(i-X(r,j))

I=1 r=O

= PB(X(r, J)) Q(r,X(r, J), J)

r=O

= max{PB(i) R(lJ) : 11 S< J) + max(PB(i) 1-R(iOJ : 11< iS J).

The optimal single-atage look-ahead policy is to search in coll J * for which

HB(j*) k BOJ) for I < J:J.

If more than one cell qualifies, then from the qualifying cello the cell with
the highest probability according to PB is chosen, If more than one cell still
qualifies, then the search cell is selected randomly from the qualifying colls
according to a uniform distribution.

The maximum Information-gain policy (Policy II. The maximum information-
gain policy is to search in the cell which maximizes the expected information
content (or equivalently minimizes the expected entropy) of the posterior after-
search target location probability distribution.

More precisely, let PB(J) and PA(r, i,j ) be defined as above, and let the
entropy (see reference [ d 1) H(P) of any probability vector P ov -' J cells bo
defined by

J
H(P) r- P() in P(0).J=l

Intuitively speaking, as the entropy of a distribution increases, the distribution
flattens. It is well known (see, for examole, reference [d )) thtt maximum
entropy*ia attained by the uniform distribution. The information content of a
distribution P Is defined to be -H(P) 4- C whore C is some fixed constant. We are
interested only in changes in iWormation and, hence, the value of C is not important.

The expected entropy U( J) of the posterior target location distribution given
search in cell J is given by

* This result holds for probability distributions on a finite number of points
but not for probability distributions on a countably infinite number of points.
In this latter case, a uniform probability distribution is not defined.
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J 1
U(J) E • Z PBW1 QWrioJ )H(PA(r,.,P))

it--1 r=0

J 1
. - Z E PB() Q(r,iJ) n[PA(r, ,J)J.il1 r=0

*1 The x n,.aximum Information-gain policy is to search in any cell J* for which

U(j*) s U(j) for 1 < J :S J.

This corresponds to a Lindley procedure (see reference ( f 1) for sequential
experimctal design as discussed In Appendix B. If more than one cell sathbftes
the above inequality, then the search cel is selected randomly frcon the qualifying
cells according to a uniform cditribution,

SThe h~gast probability cell poliey PlI..y i..). The highast probability cell
policy is to search in the cell with the highest before-setarch probability. That is,
if at the beginning of a stage PB(J) Is the before-pearch probability that the target
is located in cell J, thon the highest probability cell policy is to search in any cell

* 3* for which

PB(J*) k PB(j) for I < j I J.

If more than one cell qualifies, then the search coll is selected randomly from
the qualifying cells according to a uniform distribution.

It is interoeting to note that the before-search target location probability
distribution is identical to the expectation (with respect to PB) of the after-search
target location probability distribution regardless of the cell searched. In order
to show this, let 6(0,t jI denote the expected aftRr-soarch probability that the
target in located in cell 1, given that cell J is searched. Then

J 1
•(i~j = • Z PB(n) Q(r, n~j ) PA(r, is j

n"I r=O

j I P(i) Q(r, I,j )
1 Z PB (n) Q(r,n,j) -j

m X 1 PB(m) Q(r, n,j)
m~ 1

I

P1

i •: 2 PBi) Q(r,i.I)
P=>.0

SPB(O.



The uniform surveillance Policy (Policy IV). The uniform surveillance
policy is to search systematically through all search cells in a fixed rotation.
In mathematical notation, the jth cell is searched during the kth stage where
J a 1 + (k-1) (mod J) for k = 1, 2, ... , and J equal to the number of search cells.
That is, one searches the J cells in order and then repeats the search as often
am required.

If the target does not move, It is not difficult to prove that the success
function for this policy will converge to 1 whenever the rows of the response
matrix are distinct (the usual case).

Numerical Comparison of Surveillance Policies

H This section provides a numerical comparison of the four surveillance
policies described in the preceding section. Five surveillance cases are
considered corresponding to different assumptions about d, D, and R. In order
to reduce complexity and make it easier to interpret the results, the search grid
is limited to three cells in the first four cases and nine cells in the fifth case.
Moving targets are considered only in the first case.

Three response matrices are examined. The first is

.7 .1

and is uned in Cases I, I1, and III. Recall that R(I, J) is the probability of
obtaining a response from a search of cell j given that the target is in cell I.
This particular form oi R is chosen In order to simulate a situation where search
in one cell (the first) produces very I Lttle information gain. In this cell, the
true-response and false-response probabilities are nearly equal (. 8 and 7,
respectively).

Three initial target location probability distributions are used with the
response matrix of equation (111-2); these are a uniform distribution (Case 1)
given by d(1) =. 33, d(2) =. 33, and d(3) = . 34, a "highly" non-uniform distribution
(Case II) given by d(l) - . 75, d(2) = . 15, and d(3) = . 10, and a "moderately" non-
uniform distribution (Case 111) given by d(1) -. 5, d(2) =.3, and d(3) .2.

The second response matrix,
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R .6 .8 .6 ,(lI8
3 .6 .8

corresponds physically to a situation where the three cells are arranged in a row
and where the response probabilities increase the "closer" one gets to the target
cell. The uniform target location probability distribution is used with the
response matrix given by equation (111-3) in Case IV.

The thi'i• iesponse matrix,

.8 ... .8 ,2( ), (111-4).8 ... .8 .2

is considered in Cose V and has some features in common with the response
matrices given by equations ([11-2) and (111-3). It is similar to the response
matrix given by equation ([11-2) in that little information is gained from
searching certain cells. Equation (111-4) represents an extreme case in which
no information is gained from searching cells 1 through 8. It is similar to the
response matrix given by equation ([11-3) in that one may think of cells 1 through 9
arranged in a row with the probability of a response from a search of cell 0
increasing with decreasing distance from the target.

The initial target location probability distribution used in Case V is
d(1) = .2 and d(j) I. for 2 < j <. J.

The numerical results are given in the following subsections. In Cases I
through IV, 400 monte-carlo replications are used for each curve, and in
Case V, 50 replications are used.

Case I(a) -- stationary target. As mentioned above, there are three grid

cells and the initial target location probability distribution is uniform. The
response matrix is given by equation ([11-2). For all cells, if the target is in
the cell searched, then the probability of response is . 8. The probability of
false response is . 7 in the first cell and the probability of false response is . 1
in the second and third cells. These false-response probabilities do not
depend upon the location of the target.
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Figure 111-2 provides the estimated probability of response curve for

Policies I through IV. Notice that the success probability for the maximum
information-gain policy (Policy Ii) approaches 1 asymptotically. In the earlier
stages of search, there appears to be no statistically significant difference
between the maximum information-gain policy and the optimal single-stage look-
ahead policy (Policy I). Asymptotically, however, the maximum information-
gain policy appears to have a slight advantage. It is interesting to note that the
uniform surveillance policy (Policy IV) also does well in this example. The
highest probability cell policy (Policy [II) is not particularly attractive in contrast
to the other policies.

A problem with Policy I occurs when the target location probability distribution
becomes very concentrated. When this happens, the after-search estimate of
target location will not depend upon the cell searched nor upon the sea-:ch results.
Since only one stage Is considered, all search cells appear equally attractive and
the before-search highest probability cell is chosen. This can lead to trouble as
we shall see in Case V. Table 111-1 displays the detail :• , ne of the monte-carlo
replications for Policy I in order to illustrate this point. Notice that the state of
indeterminacy is reached at the third search stage.

Case I(b) -- moving target The same initial target location probability
distribution and sensor response assumptions are made as in Case I(a). In the
present case, however, the target is permitted to move between stages according
to a Markov process specified by the dispersive transition matrix given by
equation (lII-1). rhe comparison is limited to Policies I1 and IV.

Figure 111-3 shows the influence of target motion on probability of success
when the maximum information-gain policy (Policy It) f.s used. Three examples
are considered corresponding to values of the dispersion constant, 6 = 0, 6 = .3,
and 6 = 1. The example where 6 -- 0 corresponds to no target motion, and,
therefore, this curve Is the same as that given in Fi'gure 111-2 for Policy 11. The
example where 6 = 1 corresponds to complete dispersion of the target location
probability distribution to a uniform distribution at each stage. Herm, even If
the target's position is known with certainty at the end of a stage, the ensuing
motion will produce a uniform distribution for target location at the beginning of
the next stage.

The first transition of the Markov process Is made at the end of the first
stage. Therefore, S(1) is identical for all three values of the dispersion constant.

Figure 111-4 shows the influence of target motion on probability of saccess
when the uniform surveillance policy is used. Results are shown for the same
values of the dispersion constant as used in Figure 111-3. The striking Irregularity
of the curves given in Figure 111-4 is due to the fact that the uniform surveillance
policy considered here is a regular rotation of search through the three cells in
the grid. As noted before, Coll 1 is a particularly poor cell to searcb because of
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the high probability of false response in this cell. The dips in the curves
correspond to search of Cell 1 at stages 3k+1 for k = 0, 1, 2, ... . These dips
become increasingly pronounced as the dispersion constant increases.

As in Figure 111-3 the curves coincide at the first stage since there has been
no farget motion up to this point.

It should be noted that if the uniform surveillance policy were implemented
by selecting the search cells at random according to a uniform distribution,
then the curves would be smoother and would not exhibit the periodic dips,
This would not, however, improve the average performance of the policy.

Case II, In this case the initial target location probability distribution is
non-uniform with the highest probability assigned to the first cell, i.e.,
d(1) = .75, d(2) . 15, and d(3) - 10. The response matrix is the same as in
Case I.

This case is presented to illustrate a situation where searching the highest
probability cell is clearly not a good policy. IHere, the first cell has a very high
initial target location probability but very little is learned from a search of this
cell because of the high false-response probability.

Figure ITI-5 provides the estimated probability of success curves for Policies I
through IV. As anticipated, the highest probability cell policy does not appear to
be very good. In fact, it is only slightly better than the trivial policy which would
select the target cell at random in accordance with the initial target location
probability distribution d and reselect the same cell at each stage. In this case
the trivial policy would select the first cell with probability . 75, the second with
probability. 15, and the third with probability .1.

Once again, Policy 11 does very well, and as one might expect, Policy I
initially does better than Policy 11 with the latter catching up in the latter stages,
Once again, we note that S for Policy IV will always converge to one when the
target is stationary and the rows of the response matrix are distinct.

Case III. As in Case I1, it is assumed that the initial target location
probability distribution is non-uniform and given by d(i) - .5, d(2) :-. 3, and
d(3) = .2. Figure 111-6 provides the estimated probability of success curves for
Policies I through IV.

Once again, we see that Policy II, the maximum information-gain policy,
appears to be better than the others.

Case [V. In this case, the initial target location probability distribution is
uniform, i.e., d(1) = .33, d(2)= .33, and d(3)-- .34, and the response matrix
is given by equation (111-3). Here, Cells 2 and 3 have relatively high false-
response probabilities in contrast to the previous cases,
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Figure [[I-7 provides the probability of success curves for Policies I
through IV. In contrast to the other cases considered thus far, there appears
to be little difference in the probability of success curves.

Case V. The purpose of this case is to examine a situation where the
maximum information-gain policy (Policy II) is definitely superior to the other
plans considered. It is assumed that there are 9 search cells and that the initial
target location probability distribution d is given by d(l) !- .2 and d(j) .. . 1 for
j - 2,..., 9. The response matrix is given by equation (111-4). The results are
shown in Figure 111-8 for Policies I, II, and IV. Policy III is extremely poor iu
this case and is not shown. It continually picks the first coil for search and its
probability of success function remains constant with a value of .2.

According to this response matrix, no information is gained by searching in
Cells 1 through 8. Since the uniform surveillance policy (Policy IV) rotates
search through all cells, a considerable amount of time will be lost when this

plan is used, Although the probability of success function for Policy IV is
guaranteed to converge to 1, the convergence will be slow.

The optimal single-stage look-ahead policy will also have difficulty in this
case, and, in fact, the probability of success function for this plan does not
appear to converge to 1. The reason for this is that a state of indeterminacy is
eventually reached by this plan; this behavior was previously noted in Case I and
illustrated in Table 111-1. When the before-search target location probability
distribution PB is driven to the state where the after-search selection of the
target cell is the same regardless of which cell is searched or what response
is obtained, then the cell with the largest before-search probability is searched.
However, if the highest probability cell Is among the first 8, then no Information
is gained by the search and the after-search probability distribution is the same
as the before-search probability distribution. This means that the same cell
will be searched continually in succeeding stages and progress will stop.

Conclusions and Related Operations Research Studies

The principal conclusion based upon the numerical examples in the preceding
section is that the maximum information-gain policy (Policy 11) appears to have
very desirable characteristics in the idealized surveillance scenario considered.
Among these characteristics (as measured by the success function) are good
initial behavior in the early stages and good asymptotic behavior in the later
stages. The initial behavior is measured principally by comparison with the
optimal single-stage look-ahead policy (Policy 1) which is designed to be good
In the early stages. The asymptotic behavior is measured principally by
comparison with the uniform surveillance policy (Policy IV) which, for a
stationary target, is guaranteed to converge to 1 as the number of stages increases
indefinitely (provided the rows of R are distinct).
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We conjecture that Policy II will also perform well in cases where an
incorrect prior distribution d is used, I. e., that Policy i1 Is robust with respect
to errors In d. More analysis is needed to verify this conjecture, however.

Policy I appears to have very good behavior until the "saturation" period is
reached (see Table [11-1) where the search cell can no longer be uniquely chosen
by picking the cell which maximizes the value of the single-stage success
probability function B. The ad hoc rule of choosing the highest probability cell
at this point produces poor asymptotic performance in some situations (see

SICase V) and a better rule should be employed. Switching to randomized uniform
surveillance at the saturation point would be an improvement.

Even better, perhaps, would be the extension of Policy II to optimal multi-
stage look-ahead policies. In this regard, the theory of optimal stochastic
control might offer some useful insights.

The highest probability cell policy (Policy III) has little to commend it, in
general, although in certain special cases (e. g., Case IV) it may produce
satisfactory results. Its poor behavior, in general, results from the fact
that it does not make good use of the information in the response matrix.

It should be noted that none of the policies considered make non-trivial use of the
information in the Markov transition matrix D, It seems worthwhile to formulate
and evaluate surveillance plans which anticipate target motion by explicit
consideration of D or, more generally, consideration of whatever stochastic
mechanism is used for updating target location.

In the results presented in this chapter, it has been assumed 'hat the

response matrix R is known exactly. Since this is unlikely to be true In practice,
it would be useful to relax this assumption and develop policies which estimate R
and target location simultaneously. This kind of adaptive estimation (see
reference [ c ]) is illustrated in the examples in Chapter II (without optimization
considerations, however); there ýhe single-glimpse probability of detection PD
is treated as a random variable and estimated from the sensor observations.

In view of the good performance of Policy II based upon maximizing the
expected information gain in the after-search target location probability
"distribution, it is somewhat surprising that there has been so little utilization
of information theory in search and surveillance problems in operations research.
In fact, the relevant work which has been carried out and reported in the literature
has not reflected favorably upon tho use of information theory as a tool for the
analysis of these problems.

One of the earliest readily accessible papers on the subject (reference [h ]
which appeared in 1961) discusses the connection between informAtion theory and
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search theory and concludes with the statement "Thus, search theory should be
considered in connection with the general theory of statistical decisions rather
than witli information theory. "1 This statement is repeated and reaffirmed with
further examples in reference [ i I which appeared in 1971.

Both references [ h I and [ I I examine the search plans which maximize
expected information gain. As discussed below, we believe this is the correct
approach for surveillance but not for search.

In reference [ I which appeared in 1968, it is stated that "Ever since the
mid-nineteen-forties when the theories of information and of search became
subjects of general Interest, attempts have been made to apply the theory of
information to prnblems of search. These have proved disappointing; neither
the formulas nor the concepts of the former theory have found a place in
clarifying the problems of the latter. *,

Why do our results convey the opposite impression? The answer, we believe,
is that one must make a clear distinction between search, where the objective is
detection of the target, and surveillance ,where the objeutive is knowledge of the
target's location. The concepts of information theory can be applied to both
types of problems but in different ways.

For the search problem (but not the surveillance problem treated in this
chapter), we believe that the proper way to draw the connection between information
theory and search theory is to think of an optimal search plan as one which
maximizes (rather than minimizes) the entropy of the posterior target location
probability distribution. Viewed this way (which is different from the approach of
references [ h J and [i 1), search effort is i~sed to extract information from the
distribution rather than to add information to the distribution.

For the surveillance problem, however, it seems appropriate to maximize
the information gain (minimize entropy). This is especially true in multi-stage
scenarios, such as those we have examined in this chapter, where success can
be achieved without detection of the target in the usual sense. The scenarios
discussed in references [ h I and [ I I are limited to a single stage and thus the
time behavior of the search policies is not apparent. Another point of difference
between our analysis and those of references [ h 1, [1], and [ J is that the latter

do not consider the possibility of false responses.

Reference [ v 1 makes use of information theory concepts to consider the
optimal distribution of reconnaissance effort against targets in the presence of
decoys. This analysis is addressod to aerial reconnaissance against land
targets and is closely related to our present study. There is, however, an
important point of difference which is discussed below.
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Part I of reference [ v 1 has the most in common with our pres'ent study.
Part 11 considers questions related to enemy hindrance of' the operations--a
problem which we do not con~sider.

The basic assumption in reference [ v Iis that there are J regions (cells)
and that in the Ith region there are "N possible objects" with a priori probabilities
pi, *,pJ is subject to the constraint

1N

N .

p 1J for j 1,,.., N. (111-5)
n in

For example, in one important case, N= 3 and the objects are a missile
installation, a decoy, and nothing of interest.

The uncertainty in the jth region is dofined in reference [ v I to be

where cJ is some positive constant, T[he uncertainty in the entire map is
defined to be

*1 I J tT i

Rieference [ v I introduces and (liscurses aslsum-ptions pertaining to thle optimal
allocation of reconnaissance effort in order to minimize the uncertainty given
by equation (111-6) subject to the constraint given by eqjuation (111-5).

Although closely related to our problem, at critical dlfterence is that we ualso
make use of thle knowledge that there Is at single ftarget present in the area of
interest. This is an extremely Imp~ortant piece of information for it allows
sensor responses and other information obtained on scene to be correlated with
target motion conside rations.

In the scheme of reference [ v 1, the case where it is knlown that there Is a
single target present corresponds to N 2, where pi is thle a priori probability



that the target is present in the jth cell and p1 1 - pi. The complication arises
frnm the additional constraint that

• p -- 1.
1=1 I

This constraint is necessary and important in our tactical setting but,
unfoitnately, it transforms the separable allocation problem considered in
reference [ v I into a non-separable problem. In general, non-separable problems
are much inore difficuit to solve than separable problems. In this chvpter, we
have avoided this difficult allocation problem by restricting the search policy to
examination of a vingie cell at each stage. Further work is needed to devise
efficient computational algorithms for obtaining optimal multi-cell allocations
which maximize the expected information gain.
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APPENDIX A

GENERALIZED TREATMENT OF THE INFORMATION PROCESSING SYSTEM

This appendix presents a generalized treatment of the mathematical technique
used to calculate the examples in Chapter It. The general mathematical model is
presented and discussed in the first section. The second section spectaltzec the
analysis to Markov models. Among other things, this specialization leads to the
development of recursive computational procedures. The next section discusees
the mathematical model of Chapter II in terms of the more general formalism
presented in this appendix. This is followed by two sections addressed, respectively,

to reduction of state space dimensionality and numerical computation.

General Mathematical Model

In this section the term "model" will be used to refer to the NIM-dimensional
vector-valued procoss n1i (ml, "', mNaN wo6oe components comprise all of the
stochastic processes which are relevantlio the information processing fituation under
consideration.

The probability structure for the model is given by the triple (%, a, Pr) where
S2 is the probability space, (Y is a a -field* of subsets of n, and Pr is a probability
distribution (a measure) defined on uý. Thus,

A(t): S1 -• S

for 0 < t < w whore the Istate space" S is an NM-dimensional Euclidean space.

The r -field of Borel sets of S is denoted by fl.

The model 91 consists of "observable," and "non-observable" stochastic

prooesses, which we explain in turn.

" All random variables tire nv-,easurable functions (perhaps vector-valued)

defined on S2. When explicit dependence on w c sl is shown, (A will appear
as the last argument on tio right, a. g., A (t, (4) is abbreviated as I(t).
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An observable process is associated with a physical phenomenot, whose
characteristics can be expressed in quantitative terms and can be assumed
known to the processing system. The response processes of acoustic and non-
acoustic sensors are specific ex•amples of observable processes which are of
particular interest in ASW. In simplest terms, sensor responses may be treated
as (0, 1)-valued processes where 1 denotes a response and 0 denotes no response.
The specification of a 0 or 1 for a sensor at any particular time might be the
result, for example, of a hmnan Judgment or the output of an automatic classification
device.

In more complicated formulations, the observable processes might correspond
to more basic quantities such as voltages generated by the sensor hydrophones.

Regardless of complexity, however, the probability structure (SI, a, Pr) must
be established explicitly so that, among other things, one may compute the
probabilities associated with the events associated with the mutual interactions
of stochastic processes within the model.

The nonobservable stochastic processes consist both of "physical processes"
which desribe, for example, target radiated noise, position, course, and speed,
"and "non-physical processes" which are required to insure that the model is
logically self-consistent and possesses certain desirable mathematical properties.
The non-physical processes are not susceptible to physical measurement and
verification in the way that the physical processes are, but nevertheless play an
esserttial role in the operation of the information processor.

An example of a commonly used non-physical process is the time-correlated

stochastic process often introduced in models to represent random fluctuations
in the signal-to-u.•s. ratio of acoustic sensors (see reference [PI). This time-
correlated process is a logical necessity in cases where sensors are observed

continuously since otherwise unreasonable results are obtained, e. g., if one
assumes the random variables of the fluctuation process are mutually statistically
independent in time (white noise).

The processes of the model AI are ordered so that 91 (f], V), where the non-
observable processeo of MI are collected into one NU-dimensional vector-valued
process 0 (al, .... U-), and the observable processes are collected into one
NN -dimensional vector-valued process V (v .. V)

At times it will be useful to write S as the Cartesian product of the Ntr-
dimensional space S1 and the Nv-dimensional Euolidean space S2 , 1. e., to
write S S1 x S2 . A superscripted symbol for a point or a set will indicate
membership In S1 or S2. Points and sets without superscripts will generally
be associated with S. For example, we might write A1 C. S1, A2 C 2, tand
A AlIx A2 (- S1 x S2.

A-2
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It is assumed that the observable processes are monitored at discrete time
instants 1< < "'" and that Tr > 0. Continuous observations over intervals
of time are not considered here, tut with somewhat more effort they could be
included within the general processing framework under discussion.

Let Ot be the sub a -field of a where Ot is generated by the collection of
observable random variables f V (k): T_< t Events in ot correspond to
observations which have occurred at or~X~fore time t. In the most abstract terms,
we are interested in calculating the conditional probabilities (Pc denotes a nonditional
probability operator)

PC AIB} Pr AfB} (A-I)
Pr{ B}

whenever A e a, B c ot, and Pr{B} > 0. More generally, if p A o}t denotes

the conditional probability of A c a given the a-field Ot, then pc{.A Ot• is a 0t-
measurable function and

PrfA(hCI . fcPCfAlotI dPr,

for all C c Ot. This formulation pc f A I ot I of conditional probability is required,
for example, in cases where Pr{ B I - 0 in equation (A-1).

it is not usually necessary to compute Pc I A 1 B } (or p AI t)for all A c a.

Substantial reduction of comiuting cost and computer memory can e achieved
if events A are restricted to smaller a-fields. Eventually, in fact, we will
restrict attention to computation of Pcf AI B I for A c (At, where (pt is the sub
a -field generated by the non-observable random variable U(t). Notice that Ot
pertains only to events which are associated with U at a single time t.

Markov Models

In order to develop efficient recursive computational procedures, it is useful
to structure '1I as a Markov process. This is not as restriitive as it may seem,
since in many cases what appears to be a non-Markov process can be transformed
into a Markov process by enlar'gement of the state space and by other devices.

Let us assume that 1M Is Markovian and that G(0, -) denotes the Initial probability
measure of M1 induced on the state space S and that r denotes the Markov transition
function. Let t1 and t, denote two instants of time (t1 < t 2Y. The transition
function has the following properties by definition:
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X t is a probability distribution on (3-measurable
subsets oJs for X e S.

(2) rI(tV , ; t2, A) is a g3-measurable function on S for each
moasurable subset A of S.

(3) r satisfies the Chapman-Kolmogorov integral equation,
i.e., it 1 < t' < t2 , then

r(t 1 , X ; t 2 , A) f. r(tj' X ; t', dY) "(t t , Y ; t2 , A).

Let G(t,.) denote the probability distribution induced on S by A(t) conditioned
upon the observations which have taken place at times up to and including t, I. e.,
given events in the a -field Ot.

- 2 2
For sets in ot of the form {w: V(l,A) c A 1,..., V(i 1 ,w) c A¢ Tand

0 < T1 < 2<.. < < t }, the Markov structure permits expression of G(t, B)
explicitly in terms of tie functions G(0,.) and r. Letting A S for 1,...,x,

G(t, B) is given by

f5 fAl' '. fA G(0,dX0 ) r(o,X0; o, dxl).. . P( T 1 .-X 1 . 1i'r, dX,) r(-r , X• ;t, B)

- q. .. _1-)r, B (A-2)

fs~fA 1.". fAll fs G(0, dX0) r (0, X0, T-1, dXj)..,- r (T, -11 Xn - 0'" dX 1)

where the denominator is assumed to be non-zero (this is always true in our
applications).

In most situations of interest, equation (A-2) does not lend itself to easy
computation. There are tvo principal problems. The first is that the state space
S has very high dimension, and the second reason is that the functions G(0, .) and
r are not usually conveniently expressed in terms of mathematical formulas.
For example, the transition function r' might be expressed in terms of scenarios
which specify the stochastic assumptions for target behavior in the mission under
consideration. As in Chapter II, these statements arc most directly translated into
monte-carlo computer programs, rather than into "analytical formulas" suitable
for substitution in equation (A-2).

The Model of Chapter II

In order to motivate the introduction of additional mathematical structure for
the purpose of overcoming the two problems stated above, the following three
subsections will describe, in the formalism of this appendix, the model used to
calculate the examples given in Chapter i1.
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11 The principal objective in Chapter [i is to compute and update the probability
distributions for target location making use of target-motion scenarios and sensor
response data. To do this, the components of the observable process
ý' = (ýi... • VN ) are defined to be (0, 1)-stochastic processes which describe
the time historYof the sensor responses, i.e., for 1 < n < NV

1 if the nth sensor is responding at time t, and
in(t)

0 otherwise.

Target motion assumptions. Let 1 and 2 denote the stochastic processes
for target latitude and longitude, respectively. In the model used in the examples,
the two-dimensional target locatior, stochastic process (1 ';2) by itself is not
Markovian. However, by addition of the target velocity stochastic process
(sR, s) and the scenario random variable 9, the augmented five-dimensional

-(zip 920 NJ, A2 R) becomes Markovian. In other words, given i(t), the future
t)' > t is statistically independent of the past { 2(t') }t' < t'

The transition function for Z is specified in terms of the scenario descriptions
and is realized by monte-carlo simulation ('ee the discussion of program TRANS
in Chapter [1).

Sensor-response assumptions. This subsection presents the sensor-response
assumptions for the model of Chapter II.

The single-sensor, single-glimpse probability of detection and false response
are assumed in Chapter Ii to be themselves random variables. This is done to
call attention to the fact that in most ASW situations there is not sufficient
"information about target characteristics, sensor performance, and environmental
conditions (including non-target shipping) to provide high confidence inputs to a
detection or false-response calculation. Using the methodology presented in
Chapter ii, one begins with an initial probability distribution for the uncertain
parameters and thon modifies this distribution adaptively by utilizing the information
obtained from the sensor responses. In the language of systems theory (see
reference [c 1), this is an example of adaptive state estimation and system identification.

In the illustrative model, the sensor response (0, 1)-random variables
{ •n(Tk) .for I < n < NV and I < k < v1 I are assumed to be mutually statistically
indApendeat, conditioned upon knowledge of the target location and the detection and
false-response probability random variables PD and 1PA. That is*.

*T•(no tilde) denotes a specific value of a random variable
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(Vn(T, )V~(r~ Vl(Tk) for1 < I< NVand I< k < t

for1<nNv and il(T tj ), '2 (Tr), ýA' ID

NV
RI Pc{VTnl ý Vn(T il() (A-3)

Thus, knowledge of the target position at time T and of the probabilities of
detection and false response make the current observation random variables
mutually' statistically independent and independent of their past values.

The observable process V by itself is usually not Markovian because, among
other things, the sensor responses depend upon the target's position which is
not observable. However, when the unobservable process 01 is also specified,
the model 1 (I D(, V) is Markovian even though I is not.

The unobservable process. The unobservable process for the model of
Chapter II is defined by

r(t M. ( 01(t),%2 tM, a I M), 12t, M , 'D) ::(,ID).

The process 0 (but not the observable process V) is Markovian, since, as we
have noted, if ý,(t) is known, then the statistical properties of t(t') are
determined for all t' > t and do not depend upon values of i before time t.
The random varinbles R and ý D are not time dependent and, hence, constitute
trivial Markov processes.

Reduction of State Space Dimenstonality

The assumptions in this section are made in order to reduce state space
dimensionality. Large state space dimensionility is one of the problems previously
mentioned concerning the evaluation of equation (A-2).

Let At be a [ t-measurable subset of S 1or I 1 and 2 (pi is the Borel field
of 5i). Assume that 0 is Markovian and that G(O, ) and r may be expressed in
the special form

G(0, A1 x A2)f L(Q, dXO) H(XO, A)

and
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r(t•, Xt., t2,,Al x A 2,) JA, A(t 1,• 1 ., dX ) • . , A2.

"where L(O, ) and A are, respectively, the initial probability distribution and the
• . transition function for the unobservable Markov process U. The value H(X 1 , A2 )

1i the conditional probability that V(t) E A2 given that U0t) = X1. The function
* - H(X 1, -) is assumed to be a probability distribution on 3p for every X1 E S1 and

H(., A2 ) is assumed to be a pl-measurable function on S1 for each 32 -measurable
set A2 C S2 .

Under the above assumptions, it can be shown that for subsets of S of the

form B1 x S2, where B1 is any (3-measurable subset of S1, the function G(t,•)
defined by equation (A-2) can be rewritten

1 2 KtF H~12)] 1(-4)

GOB~J KtJS fs' f s' 'j IJIH( L(Ot dX0) (

1 1
A(O, X; dX)... A(T,1 11 X 1 ;T dX1) A(., X, ;t, B)

for t > 0, where Kt is a normalizing constant defined so that G(t, S1 x S2) ý 1.

The significance of equation (A-4) is that probabilities associated with the
unobservable process VJ and conditioned upon the observable process I may be
computed by integrations over the state space of S1 of I rather than by integrations
over the state space S of 1M1 as required by equation (A-2). Among other things,
this decreases the amount of computer memory required for processing the data
and usually can be expected to increase computing speed.

Another advantage is that equation (A-4) may be computed recursively. Let
BIc.9 and A' c p for I< < .Further, let t> 0and T 0. For notational
convenience, Befine L(t, 1D) G(t, B x S. Then one can show that for j < vj - 1

J+IL(~+1 B1) aj fl fB1 L(i', dX1 ) A("T, X',r, J 1' ~ ~~ H(X1+ Aj+)2 ~(A-5)

and for t > T (the last time of sensor observation)

L(t, B1)3 K2 fSI (1',. , dXI) A(r, Xl, t, B1). (A-6)

The factor K.r appearing in equation (A-5) is a normalizing constant defined so
that L('r1, S)'J I.

Equations (A-5) and (A-6) indicate that, in r sense, all relevant past information
about target motion and sensor response is contained in the most recent probability
distribution L(t,. ) defined on S1.
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Numerical Computation

In applications of these concepts to large-scale, multi-sensor, multi-platform
operations, the conditional probabilities L(t, BJ) have been computed from
equations (A-5) and (A-61by using monte-carlo simulation of 0 and analytic
determination of H(X 1 , A ). This section briefly outlines these computational
procedures in terms of an idealized computer-processing system.

The principal advantages of the computational procedures discussed in this
section and employed in Chapter [I are as follows:

(1) Realistic target motion scenariosi and descriptions of seneor
behavior may be used when formulating the processing algorithms
since monte-carlo simulation reduces the need for introducing
artificial mathematical assumptions in order to obtain closed-
form solutions.

(2) A minimum of computer core memory Is required, since most

data are stored peripherally and processed sequentially.

(3) in many cases, certain expressions can be precomputed, making
use of existing nmodels such as the large-scale ASW simulation
models APAIR and APSURV. Off-line precomputation, when
feasible, resilts in rapid processing, which is particularly
useful in real-time tactical applications.

The reader should refer to the section of Chapter Ii entitled "Information
Processing Procedures" for a more detailed discussion in terms of the illustrative
model.

All information concerning past target movements and sensor responses
is contained in two external files UFILE and WOHT. The processing consists of
reading these files into the computer in parallel and updating records a pair at
a time, one from each file.

L•et UFILE(t) and WGHIT(t) denote the contents of UFILE and WGHT, respectively,
at time t.

The file UFILE (t) contains Nr monte-carlo samples of 0(t), and the file
WGHT(t) contains Nr "weights, "each pertaining to the corresponding record of
UFILE (t).

Let fn(t) denote the nth simulated sample function of 0(t) for 0 < t andi 1 <_ n < Nr,
here NV denotes the number of replication•. Since 11 is Markovtan, knowledge of
n(t) statistically determines the values of 'On(tI) for V' > t without reference to values
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of on(tt) for t' <4. Fqr 1 < n < Nr, the nth weight "n(ý) contained in WGHT(t) is

the probability 4., H (OYCr A)A2 b~ased upon the observed sensor responses.
START denotes the computer program which creates UFILE(O) and WGHT(0).

The file UFILE (0) is created by generating Nr ,nonte-carlo samples from rcte
initial probability measure L(O,. ) of U.

Since by definition r~o observations are associated with time t -7 0, each record
of the initial file WGHT(O) contains the probability 1. These weights indicate
that at time t - 0, all samples of UFILE (0) are considered equally likely,

Now suppose that UFILiB(t ) and WGHT(t ) associated with time t1 are to be
updated to time t2 . As above, the times at which observations are obtained are
denoted j, .".'. 0 T1 , and T < t2 represents the time of the most recent observation.
MAsurke that t 1 <'," < ... < t2 . The first step Is to update UFILE(t1 ) to time

Let TRANS denote a computer program which updates UFILE byAiplemnenting
the transition function A. Let t' - t and 'T' - 1T The first record U (t of
UFILE (t') is read into the computer. The probability distribution A(t', , r'.)
is then sampled by monte-carlo and the result ONT') becomes the first record of
UFILE(T'). This procedure is repeated for each record of UFILE(t') until all
records have been updated to T t .

The next stop is to update the file WGHT(t t), OBSERV denotes the idealized
computer program for this purpose. The inputs to OBSERV include the newly
created file UFILE(T') and the file WGHT(t')- as with UFILE, updating is carried
out one record at a time. A pair of values tn(T') and wn(tt) is then used to compute

wn(-rt) using the formula

Swn(T') wn(t') H(if C('), A')

which follows from equation (A-5).

Once files UVILE(T 1) and WGIIT(T3 i) are completed for any 2 < j < il, files
UFIL (T-) and WGHT(T !are obtained by repeating the procedure with-t' T I, and
TP . This continues until files UFILE(Tr ) and WGHT(?• ) are generatedi.

If t9 > T•, then the final update consists of using TRANS to operate on file
UFILE(r-¢) in order to generate UFiLE(t ) (see equation (A-6)). Since no new
observations occur between times Tq and t, WGHT(t 2 ) is a replica of WGHT(-rl).

Any probability associated with the random variable U(t 2 ) conditioned upon
the observed process I may be estimated using files 11FILE (t2 ) and WCiIT(t 2 )
and the formula
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Ani
1 wn(t2 )

2 neI(Bl ) W(-2)
Pr{ U(t2) c BIfV () ( r A1 for -<j Ti (A-7)Nr 

A

z Wn(t 2)n=l

where I(B1) n{ Un(t) c B' }

A-10



APPENDIX B

FORMULATION OF THE SEARCH AND SURVEILLANCE PROBLEM AS A
STATISTICAL SEQUENTIAL EXPERIMENTAL DESIGN PROBLEM

by

Thomas L. Corwin

The purpose of this appendix is to suggest a theoretical framework in which 4
to relate information-theoretic concepts to surveillance in a false target environ-
ment. It is shown that the problem of which cell to search at each stage of a
surveillance operation may be viewed as a game between the search planner and
Nature in which the payoff to the search planner is measured in terms of the
information he gains about the true state of Nature for a particular choice of cell
to search. Two sequential design procedures are examined in this context.

In the first section the surveillance problem is stated as a problem in statis-

tical hypothesis testing. In the second section some fundamental concepts of the
theory of sequential experimental design and of information theory are introduced.
The third section is devoted to the discussion of a general measure of the infor-
mation content of an experiment, called the discriminator function. In the fourth
section it Is shown that the values assmned by the discriminator function may be
viewed as the potential payoffs to the experimenter in the play of a certain type of
two-person game. Discussion of the sequential design procedures of Chernoff and
Lindley as particular examples of such games is presented in this section.

Introduction

Let a region in N-dimensional Euclidean space be divided into J non-null
measurable sets Oj (the search cells) for 1 < j 5 J.

Let 0 T denote the cell containing the target. In this appendix we assume
that the target is stationary. Let the parameter space be given by { 1, . , .J).
Assume also the existence of conditional probabilities R(j, k) for 1 < j < J and
I < k < J, where R(j,k) is the probability of a response upon searching in ok.
given the target is located in Oj.

It is then desired to test the following simple hypothesis against the attending
composite alternatives:
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H i-T
H0 : T

for I < j < 1and 1 < i < J.

Hi - T for some j t
a

En the ensuing discussion the points of the parameter space {1, ... , J} will often
be referred to as "states of Nature."

Preliminaries

Let us consider a measurable space (Z, ,.') [reference [ wI, p. 2], i.e.,
• is a basic set of elements x c )L and a a-algebra of subsets of 7.. We
regard 2.. as the sample space of an experiment and Z.. as the set of all possible
events made up of elements of the sample space. Now let us consider the con-
struction of J probability spaces. For each possible state of Nature j c { 1, . .. , J)
let ýF be a probability measure defined on.,X,. We will assume that the probability
measures are mutually absolutely continuous aijd distinct, Thus, essentially we
are considering.J probability spaces (), ', 'j), JE {1, ... , J}

For example, in the application mentioned in the introduction, the sample
space for an experiment in which all of the cells { 0O: 1 < J < J) are simultaneously
searched over and in which J 3, is given by `4 -x 1 , x2, .. x8 }, where

(N-l, NR, NR)

x2 (NE, NR, R)

x3- (Nil, RI, NR)

x4 (N-R, R, R)

x 5  (R, NR, NRl)

x6 - (R, Nit, R)

x7 (R, R, NR)
xS (R, R, R).

Here an "'R" in the kth entry of xj indicates a reponse in cell k and an "NiR" in the

kth entry of xj indicates no response in cell k, for 1 < j < 8.

The measures {• l, "", may be constructed in this case by defining the

value of r on each element of the sample space. The value of '.j on a particular
element of the sample space is simply the probability that the particular sequence
ot R's and NR's will be observed given that the true sac.• of Naiure is J, i.e. , T - J,
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(or given that thiet tar'et is in cell ). Thus, if it is assumed that cells are
searched indtpendently, ll the, examp)l prcsCnted above is defined as ',lows:

. j(xt) I R-l), 1)1 II -R(j, 2)1 II - R(j, :3)

" j(x20 I- R(j, 1) 111 - R(j, 2)1 Rj, :3)

Sj(X3 ) 1 - R( 1, 1) R(Ij, 2) 11 - R (, 3)1

-j (xY) [1- R(j, 1)1 li(j, 2) R (j, 3)

iF (V5 R(J, 1) 11- R(], 2)11 t .- I(J, 3)]

-j (x6 ) [I(j, 1) 1- R(j, 2 ) I (j, 3)

i "•(x7) R~j 1) 11 j 2) [11- R(j, 3)1

, "j(X8) R(j, 1) R (J,2) 1(J,3) ; for I < J.

Lot us now consider a set of M random variables defined on the samplv space
"denoted / 1, 1.* M In the above example if the experimenter is allowed

to search only one cull, we could define a set of M J random variables on the
sample as follows:

1 if thie Itnh e, ntry in xi is an I'll,

S-- 'Ym(xi)

•0 If the mth entry in xi Is in "NIl, for 1 i 2', 1< i l <.

Let us now consider the following probleC1: lAet us asstme that for a
* particular experiment there are J possible stiates of nature. For each J, 1 < . J1,

there exists a probability space ( /., ,I .) and on the sample space are
"* defined M random variables, Y1 , I M Now let us also assume that avalable

to the experimenter arc N trials in which he may observe any one of these Al
random variables in order to inake inference about which one of the J states of
"Nature is the true one,. In the torminology of the problem stated in the introduction,
the search planner has available to him N trials in each of which he may search
any of J cells in order to make a determination about the actual location of the
target. In this case M J. The problem then is to determine which random

"* variable should be sampled at each trial in order to optimize his ability to discern
the actual state of Nature at the end of N trials. Ill the termilnolog of Chaptcr [li,
the search planner is interestc(I in maxim izing S(N).
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To this end, let us discuss the likelihood ratio statistic. For purposes of
simplicity, let us assume that for 1 < m < M the random variable Ym is real
valued. Let us also assume that the probability measure of i'm, 1 < m < M, is
absolutely continuous with respect to some fixed measure p defincd on the Borel
field of the real numbers. For each stpte of Nature j c (1, ... , J), let us
denote the density of the random variable Ym by win, j for 1 < m < M. Then the
likulihcod ratio statistic for testing the hypothesis that j Is the true state of Nature
against the alternative that k is the true state of Nature is given by

A A N Winn jrn)WM,,,,ymL(J, k, mn1 , *..., mN,~ Yml ... Y ) = A J

forlI< J<Jandl1k_< J,

where
A

(i) Ym is the sampled value of the random variable Ym-,
the random variable sampled at the nth step, and

(ii) Wmlj() Is the density of the random variable Ymn

under the hypothesis that j is the true state of Nature.

Thus, at the nth step, the increment in the likelihood ratio statistic is given by

r Al
A5(j, k, in5 , YJn) log A for 1< J < Jand 1 < k< J.

AWmn- k(Ymn)

A
Intuitively, if j is the true state of Nature, 6(J, k, ram, Ymn) represents the

additional ability, obtained through sampling Ymn at the n step, to discriminate
between the hypotheses J and k. Roughly speaking, at the nth step one would
prefer to sample the random variable Ym* which maximizes this increment on
the average.

In the terminology of Kullback and Lelbler, reference [k 1, given the m
random variables {fm : 1 < m < M} from which to choose at the nth step, the
expeilmenter would prefer to choose that experiment which maximizes the
information number [(, k, m) defined as follows:
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A
(j,k,m) f. 6(~j,k,n,x) wm, j(x) d/P(x) for I < < J, I < k _ J, I < m < M.

(B-i)

Implicit in this definition is tho assumption that j is the true state of Nature.

The Discriminator Function

Since at the nth step of any sequential scheme the experimenter, in general,
does not know the true state of Nature, he is faced with the problem of choosing
one of the random variables {Ym : 1 < m < M} to maximize his ability to
discriminate between some astimate of the true parameter value T and the
remaining parameters. Thus, one is led to consider maximization of analogs of
the expected increment in the likelihood ratio statistic or the Kuliback-Liebler
information number presented in expression (B-i). The analogs to be considered
here have the following form:

(I) Let {Ai : 1 < I < J) be a set of real numbers such
that 0 <_ A < 1 for 1 < i < J and EJl %= 1.

(ii) For eachm. E{1, .. , M), loet (m,.)bea
density with respect to the measure p.

Then define the "discriminator" function D as follows:

CO r (m 1)
D(m, 0(m,.), A1, ... , Mj) _ ljiog -J ,(m,x) dp (x)

JLWm, I(x)

for I < m < M. (B-2)

Many of the important discriminator functions discussed in the literature
appear as special cases of the discriminator D, for specific choices of the
function • and the real numbers A, . .. , Xj,. Fir instance:

(I) Let j and k be two elements of the sami. e space
{ 1, ... , J) ; thon define the function tj by

J,m,x) �-Wm,j(x) for-a'< x<-, 1< m< M, 1< j< J (B-3)
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and define

I for I = k

w (k,i) = for 1 < i< Jand I < k< J. (B-4)

0 for i k

Then the number D(m, i1(j,m,.), w(k, 1), .9.. w(k, J)) is the
expected increment in the likelinood ratio statistic for testing
the hypothects that j is the true state of Nature agaiast the
alternative that k is the true state of Nature when sampling the
random variable 4m. If [*.1 is the mode of the posterior
probabilities defined on the parameter space {1, ... , J) at
the (n-l)st step and i±l. is the mode of the posterior prob-
ahilities defined on the parameter space at the (n-1)st step
restricted to the set (1,..., J} - {in*}, then the number
D(m, 1(i*..1, m, ), u)(i_-i, 1), .. w(in_*,J)) is a form of

the discrimination number used in Chernoff's procedure A
(reference [ x 1) to be discussed later.

(ii) Let us modify example (I) above slightly to produce a
different discrimination function 0. Instead of the function w
defined in (B-4), let us use a real-valued function C defined
on the sample space (1, .. J), satisfying

(a) 0< (t)< 1, for ic 1I, ... , J) - {in1*}

(b) w(inl) 0

(C 1r1 w(i) 1(c) ri

**

(d) D(in, •(in l ,., ,( , M P . ý J))

inf D(m, q(in-il MO )V hit .. I %J),
(Xl, " ,J) c. A(i*_1

where

A (k)= X(l .. j) 0_< x, < I

for {l , ) J, Y Ai 1, and, ,0. (X,-5)
' I
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and define

co(k, 1) =for I < I < J and 1 < k < J. (B-4)
( for I'k

Then the number D(m, I (j, m, '), w(k, 1), w.. (k, J)) Is the
expected increment in the likelihood ratio statistic for testing

the hypothesis that j is the true state of Nature against the
alternative that k is the true state of Nature when sampling the
random variable km. If i*.- is the mode of the posterior
probabilities defined on the parameter space {1, ... , J) at
the (n-l)st step and i•**l is the mode of the posterior prnb-
abilities defined on the parameter space at the (n-l)st step
restricted to the set (,. J) - then number
D(m, m (i.• l,m ), w (i*.l, 1), ., w(inl,J)) Is a form of
the discrimination number used in Chernoff's procedure A
(reference [ x ]) to be discussed later.

(ii) Let us modify example (I) above slightly to produce a
different discrimination function D, Instead of the function W
defined in (B-4), let us use a real-valued function ' defined
on the sample space (1, ... , J}, satisfying

(a) 0_< w(i)_< 1, for i {I, c ., J} - {in_1

(b) w (n-)I
0dC E w (I)

(d ) I)(m , q (in_l Pm O, .)I I. ) ... , 0 ( )

inf D(m, rn (ini, m,', 91 X1 0 -I NJ),(kl,.. , j) c A(i n.1)

where

A(k) (,... j) :Oz 0 <A, 1

J

fori, U, ... , J) A, 1, and Xk- 0}. (13-5)

13-0



As will be dibcusstd later, the discrimination nutnber,

D(m, n-(i*_., m, • ) .1 1), ... , Co (n, J)) represents the

payoff to the experimenter in a particular game outlined in
Chernoff's procedure A for his choice of random variable 'm
at the nth step when Nature may choose from among only a
certain set of her pure strategies (see fourth section); while
the discriminator D(m, n (I*-, m, ), w (1), (.)(J))
represents the payoff to the experimenter in the sanme gume

IW for his choice of random variable Ym when Nature is allowed
to choose from among a wider class of her mixed strategies.

(iii) Let {an-1(i) : 1 < I < J} be the set of posterior probabilities
defined on the parameter space { 1, ... J} at the (n-l)st
step. Then define the function E as follows:

~J
'Ii• - -;. EE(ia, x) (V tl n-(i) wi, i(x) for--• < x < ¢and 1 < m_< M.

Then for 1 < m < M, the number D(m, E(m, *), an-l(1), ., n-l(0)
is the expected decrease in the entropy of the posterior
probabilities on the parameter space at the nth step given that
the experimenter samples random variable Ym. Notice here
that the choice of in to optimize D(m, E (m, .), n' -1(1), ... , v,n-l(j))
Ls essentially an attempt to increase the average expected
power to discriminate between the current estimate of the
density of Y"m given by Ell vn-l(j) w,(' ) and the densities

of Ym under the assumption that each of the parameters
1, . .. , J) represents the true state of Nature.

A number of simple results regarding the function D may be proved using the
results of Kullback.

THEOREM B-1. For 1 < m < M,

. 1(m,) _> 0. (B-6)

Proof. In Theorem 3. 1, p. 14, of reference I t 1, Kullback shows that for
l < J and I m < M,

log-i p(m, x) dtp(X) > 0.

13-7
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Thus, expression (B-6) follows from the non-negativity of the elements of
{Xj : 1 < j <_ J} , which proves the theorem.

Let D(m2, i 2 1, 01 1, Ag) be defined by

D(ml, i 2, , Alt, .- ;j) =

SCo 00 A log (On, Xl) 0 (M2, x2) nl I) (f-,j f- 'gwj~ 2n.1x)w2~2 •mlX)(2X2) dp(xl) dp(x2)

for 1 < n1  M and 1 < m 2  M,

where

(i) 0< lforl< j<Jand2;j=•j = 1 and

(11) for each mn, 6 (m, •) is a density with respect
to the rneasur, ý,

Then let us prove the following theorem.

THEOREM B-2. For I < ml < MandlI< m2 5< M1

D(nl, m 2 , ,0 1 ,. '...,J) D(ml,* ,\ 1l, ' , J) + D(m 2 , , Xl, ... FJ)'

Proof. We have

D(rn1, m2, Of 'N1f .. ,

W• f 1 0 ( 1(,• X1 (n12, X2)1

- f f jlog (l,X) 1 (l, xl) ( 2 ,x 2 ) dx) dp(x

-~ I r (n 1 ,,x 1) 1 r2jx2]2

f A Ig_--i 0(ml, xpýdp(x,)
- =1 lo WmV j(xi)J

SJ .. [(mn2 ,x 1
J 3 ^j j1;WA xI2 ) 4 (m2 x2 ) dM (x2 )

"•D(ml, A,1, ... ,J) D(m2, , Al- I j).



a•

Thus, Theorems 11-1 and B-2 show that 1), as defined in (B-2), is non-negative
and additive in the sense discussed above. Both of these results are, of course,
consequences of the nature of the log function used in the definitions of D and Df.
Special cases of Theorems B-1 and B-2 are presented in a variety of sources
such as Kullback reference [ k J, Lindley reference I f 1, DeGroot reference [y y,
and Box and Hill reference [ z

Formulation as a Two-Person, Zero-Sum Game

The concepts of game theory were first introduced into the study of sequential
experimental design by Chernoff in reference I x ]. Here we generalize those
notions to a wider class of games betx~een the experimenter and Nature to include
the selection procedure described by Lindley in reference [ f 1.

Game formulation. At each rtage of the uxperimciit, we assume that the
experimenter is Interested in maximizing a quantity of the form (B-2). The
number of points in the parameter space, alternatively referred to as states of
Nature, as well as the number of experiments available to Lhe experimenter,
is finite, and we formulate this prcblem as a two-person, zero-sum game as follows.

Let as assuy'f' that before a given trial in an experiment, the experimenter
must decide which of M random variables {Yrm 1 < m < MW he will sample. lie
also believes that depending upon the true state of Nature the payoff to him will
vary according to his choice of random variable. Now let us say that the
expe•lhnenter has decided that for 1 < j < J and 1 m e M, if the true state of
Nature is "j" and he chooses random variable Ym, the payoff to him will be
p(j, m) given by

p(j, ni) f l o 0 (..m, x) h(m,x) dp(x),

who re

(I) win, j(. ) is the density with respect to p of the random
variable Yim, given that J is the true state of Nature, and

(iif for eachn { .... ., M} , 0 (in, is a density with
respect to the measuro p.

However, let us also assume that, in addition to choice of a particular state
of Nature j and a particular random variable Yin, called pure strategies for each

player, the players may choose mixed strategies, A mixed strategy for Nature
is a probability function A defined on { 1 ,.., .11 and denoted by j At1 _: I < <
where Aj represents the probability with which Nature chooses parameter J at the
step in question for 1 I < J. A mixed strategy for the uxperimenter is a

Ii-9



probability function -y defined on {1, . M M) and denoted by (-m ; I -. in < M)
where ym represents the probability with which the experimenter chooses the
random variable Ym for 1 < m < M. However, in some cases, the rules of the
game may specify that either Nature or the experimenter or both may choose
only from among pure strategies.

Thus, if Nature chooses mixed strategy X, the experimenter would obviously
like to choose the random variable Ym to maximize his expected payoff. If Nature
chooses mixed strategy X, then the expected payoff to the experimenter for his
choice of random variable Ym is given by

J
r(m) Z Xj p(j,m)

j=l

=D(mv 09, Nl, ... , 0 j) for 1 < m < M.

Thus, if the experimenter may assume that he knows Nature's strategy at any step,

his best strategy is to choose the random variable Ym*, where m* maximizes
r over the set {I, ... , M) In this case, the maximum payoff to the
experimenter called the value of this game is given by

v max F(m)
me 1 .., M}

max D(m, p(m,', AI, ... , Xj).MEr (1,. .. , M)

If, on the other hand, we may assume that Nature chooses a strategy from
the class of mixed strategies G in such a way as to minimize the maximum payoff,
then the value of the game to the experimenter is given by

J
v* max min Z NJ P 0, M)

mE {1,...,m} (A 1 ,"J)EG .ax mx 4- GJ)l

max min D(m, 0(m,.), AN J XJ).
mE {1.... ,rn} (AN,...,Aj)( G

Chernoff's procedure A. As above, let i b13 the mode of the posterior

distribution of the parameters at step n-1. Then in reference ( x I Chernoff has

suggested that the experimenter choose the random variable im at the nth step to
maximize the function lxi defined on the sot f1 ... , M) as follows:

B-10



rn.I

I) j,

where

(i) the function I is defined in (B-i) and

(iH) A(.) is defined in expression (B-5) above.

Chernoff has shown that this is equivalent to a choice on the part of the
4• experimenter of a pure strategy to maximize his payoff in a. game with payoff

function p, given by

P-O Wj J Wmi* 1 (X) dp(x) for 1< J and 1 < in < M,-'• l(J~) f_ log Wmi, J(x) wn, n ..gI I
where it is assumed that Nature is free to choose a mixed strategy from among
all mixed strategies giving zero weight to the mode of the posterior distribution
of the parameters at step n-1, and the experimenter is free to choose his strategy
ouly from among his pure strategies. Here the value of the game at step n is
given by

K J

V vmax inf l inm r C t . ..1 , . . . .In) • A ( iln -1 ) l

In terms of the discriminator function 1) defined In expression (B-2), Chernoff
I states that at the nth step the experimenter should sa.nple the random variable Y(m

to maximize the function D(., I i•-I, - -), ý,(1), ... , w-(j)) over the set { 1, l, M}

Thus, the value of the game may also be written as

v max jI(m, l(in;l, , ), w(1), .. w(J)).

As has been stated previously, if it is 1ss.imed th1t Nature maY Choose only

from among her pure strategies, then the value of the game is given by

I
v2 M nil , n , n_



It is a sinple nlatter to show that

V2 > V1 .

Under mild restrictions, Chernoff has shown the following in reference [x j.
(The stopping rule of procedure A Js not directly relevant to our discussion and
need not be defined here.)

LEMMA 1*. Let the stopping rule for procedure A be disregarded. Let

be the smallest integer such that i* = T for n "-r. Then there exist b1 > 0 and
b > 0 such that

PrfT > >n} < ble b2n for n > T.

While in reference [x I Chernoff has proved that procedure A has certain
desirable asymptotic properties, he has also pointed out that procedure A may
lead to "initial bungling, " since "At first it is desirable to apply experiments
which are inform'ative for a broad range of parameter values. Maximizing the

Kullback-Liebler Information number may give experiments which are efficient
only when 0 is close to the estimated value."

Lindley'qprocedur~e. Lindley, referencer [ f 1, has suggested an alternative
approach to the sequential-experimental design problem, which, as he points out,
applies Shannon's definition of the information content of a probability distribution
to the discussion of the notion of information in an experiment. This is closely
related to the approach taken in formulating surveillance Policy II in Chapter III
as w,• shall see below.

Liodley defines the amount of information provided by an experiment as the
expected change in the• entropy of the posterior probabilities of the parameters
as a result of performing the experiment.

For example, if Yn-1 is the posterior distribution of the parameters {1, ... ,J

at the (n- 1 )st step, then for 1 < m < M the Shannon information content in the
selection of random variable Ym at the nth step is s(m) given as follows:

Implicit in the proof of this lemma presented in reference [ x I is the fact
that for each m c { 1,. m} and for any pair of distinct parameter values I
and j, there exists f( such that p(V) 0 and wf( , Wni 1 x dpx /f Wm,j(x) dp(x).
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where W LZ~f",i(x) log~fn,ji(x) ::' Io:nw] B?

j,
wher

n--iwn jýx) an-(j)
In,, j(Y,) M o j J._

,Wmi~ x an-1(J

SUsing Chernoff s results in reference [aa], if E is defined by

E(m,x):- Za )wm, j(x) for1<m<Mand-c< x<a,

then it Is easily shown that
&

I s(m) D(m, E(n, n1 l(1), ... , 0 n'l(J)), for 1 < mn <

Lindley in reference If J suggests that the experimenter choose the random
variable Yn at tie nt step to maximize the function s defined above,

The following discussion relates Lindley's procedure to the maximum
information-gain policy formulated in Chapter Il.

"I In the context of Chapter 111, nn-1 indicates the current target location
probability distribution PB and 4(m indicates the outcome obtained if the nith cell
is searched. We define ý'm so that Ym = 1 if a response is obtained and Y1m = 0
if no response is obtained. The measure p in equation (B-7) assigns weight 1 to

-. each of the gets (o} and {i} and p(A-JO, 1}} - 0 for any measurable set A.

The quantity Wm, j(r) is the probability of obtaining an outcome r given that
cell m is searched and the target is in cell J. Here, r ý 1 indicates a response
and r 0 indicates no response. In the notation of Chapter III,
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Wm, j(r) - Q(r, J, m).

The probability em d(r) is the probability that the target is in cell j given
that cell m is searched'ind response r ip obtained. In the notation of Chapter III,

jj(r) = PA(rjm).

If entropy of a discrete distribution P on J cells is denoted H[P], i.e.,

H[P] - E PO)In Pj),
J=1

and if as in Chapter III

J 1
U(mW) E E PB(J) Q(r,J,k) H[PA(r, .. k)],

J=l r=O

then

1•

s(m) ]- PB() Q(r, j, M
r=O =HP (r m)l

+ E [PB PB(J Q(r,J)r=0

= -U(m) + H[PBI. (B-8)

Equation (B-B) Indicates that finding the m. which maximizes s(m) (the Lindley
approach) is equivalent to finding the m which minimizes U(m) (Chapter III approach).

Like the Cbhrnoff procedure A, Lindley's procedure for choosing a random
variable to sample at the nth step may also be considered within the context of
game theory. Once again, we think of Nature and the experimenter as playing a
game with a particular payoff function. In this case the payoff function Is slightly
different that the one assumed by Chernoff in his procedure A. For a choice by
Nature of the parameter j and a choice by the experimenter of the random variable
Ym, LUndldy assumes that the payoff to the experimenter at the nth step is given by

B-14
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f Wm, I(x) inxt a j(X
P2 i1 ii 1 I x

for I<_ < J and 1 < m< M. (B-9)

Thus, the payoff assumed by Lindley In his game with Nature is significantly
different from that assumed by Chernoff. Also different is the strategy assumed
for Nature. Lindley assumes that for her strategy at the nth step, Nature chooses
the mixed strategy afnl. That is, Nature chooses parameter j with probability
an-l(j) at the nth step.

Consequently, assuming that Nature plays mixed strategy a n-1 at step n,
if the experimenter wishes to maximize his expected payoff, he must choose thn
random variable i'm* such that m* maximizes the function I - defined as follows:

2r

Jt

J(i) a - (j) p2 (J, m)

s(m) D(m, E, an-l(l), ... , . vn'(J)), for 1 < m < M.

Thus, the value of the game or tile maximum information which the experimenter
can derive from a sample at the nth trial is given by

V3  max D(m, E, a n-l(1), ... 0 n'J)
rn { 1,. . .,Ill)

Large-sample results similar to the ones obtained for Chernoff's procedure A
in reference [x I have not yet been obtained for Lindley's procedure. However,
it is fairly obvious that since IUndley's procedure uses all the information about
the parameters available to the experimenter at every stzagc, it will not be subject
to "initial bungling" to the same extent as Chernoff's procedure A. However,
conversely, due to Its heavy reliance upon all information regarding the parameters
at each step rather than only the most likely as in procedure A, Its large-sample
properties may not be as dramatic as those attending Chernoff's procedure.
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